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Four take-aways

* See simulation and digital twin from a broader perspective
* See fundamental challenges of digital twins in our domain
* See potential approaches for resolving those challenges

* See a major roadblock to ultimate success




Discrete Event Logistics Systems (DELS)

A network of resources
through which objects
move and are transformed
to a higher value by
processes with discrete
start and end times.
Operations are managed to
achieve objectives

Objects:  material, products, people, information
Resources: machine tools, factories/3PLs, doctors, ICT
Processes: conversion, production/logistics, diagnosis/treatment, computation/presentation, moving, storing

DELS are ubiquitous, often large-scale and complicated, often emergent.
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What is a "Digital Twin”?
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Observe DT
Applications

* Asset management
* Monitor state

* Predict state
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Observe DT Enabling
Technologies

* Structural (CAD) models

* Analysis agnostic

* Behavior models
* Physics-based

e Control theories

* Visualization

* Sensors, communication

* Dashboards
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Virtual DT
Applications

* Domains

* Rotating machinery

Automobiles

Aircraft

Integrated circuits
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Design-driven
Enabling Technologies

» Domain-specific language

* Analysis integrated with
analysis-agnostic system model
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Integrated Analyses
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Modelica: DSL + analysis-agnostic
system model + integrated analysis
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Recap: Successful DT technologies are based on:

» Domain-specific language
* Informs instance system specification

* Supports design methodology

* Integrated (or federated) analysis agnostic computational system
models specifying observable structure and behavior

* Analyses integrated with system specification models

* Implementable computational theory of control
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Digital Twins for DELS
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DELS Analysis Models

L =AW

Activity network
Analysis Tools Flow network
Queuing network
Simulation

For nearly 70 years, we've been analyzing DELS by creating ad hoc analysis
models. The pinnacle of analysis tools is discrete event simulation models.
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Sense-making
* Underlying explanatory system model

n what language is the underlying
explanatory system model articulated?
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Ford Shows How Virtual Reality Will Change Our Lives (triplepundit.com)
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What's missing?

DELS domain specific language (a laVHDL or BPMN)

DELS theory of control (implementable)

* Analysis-agnostic DELS models (system specification)

» DELS Integrated analyses (performance, cost, quality, ..

(c) 2022 Leon McGinnis
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What's missing?

DELS domain specific language (a laVHDL or BPMN)
DELS theory of control (implementable)
Analysis-agnostic DELS models (system specification)

DELS Integrated analyses (performance, cost, quality, ..
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Toward a DSL for DELS

/' (c) 2022 Leon McGinnis
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SysML Block Definition Diagram DiscreteEventLogisticeSystems [ DELS_Ontology_extended ]/J
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SysML Block Definition Diagram DiscreteEventLogisticeSystems [ DELS_Ontology_extended ]/J
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Formalizing a Reference Model

Theory of Discrete Event Logistics Systems (DELS)
Specification

Published: June 12,2020

Author(s)
Timothy A. Sprock, George Thiers, Leon F. McGinnis, Conrad E. Bock

Abstract

System models and model-based engineering methods have the promise of transforming the way that industrial engineers interact with production and logistics systems.
Model-based methods play a role in improving communication between stakeholders, interoperability between systems, automated access to consistent analysis models, and
multi-disciplinary design methods mplex systems. However, there remains a need for a foundation for modeling these kinds of systems -- a foundation that tailors
methods and tools developed in other engineering domains to the unique concepts and semantics of production and logistics. This foundation is the topic of this report. This
report documents a framework and model libraries for modeling discrete event logistics systems (DELS), an abstraction that covers manufacturing plants, material handling
and transportation systems, warehouses, supply chains, etc. The DELS abstraction was created by identifing and modeling commonalities across the kinds of systems that
industrial engineers typically encounter, and analysis models they use to analyze those system. tends well-known product, process, and resource (PPR) ontologies to

incorporate a library of operational control model components, and is connected to Commodity Flow Network (CFN), modeling networks, flow networks, and process networks.

The relationship between DELS and CFN formally links system models to abstractions used to create analysis models, such as discrete event simulation.
Citation: NIST Interagency/Internal Report (NISTIR) - 8262

Report Number: 8262

NIST Pub Series: NIST Interagency/Internal Report (NISTIR)

Pub Type: NIST Pubs

Download Paper
DOI Linkd

Theory of Discrete Event Logistics Systems (DELS) Specification | NIST
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https://www.nist.gov/publications/theory-discrete-event-logistics-systems-dels-specification

What's missing?

* DELS domain specific language (a laVHDL or BPMN)
* DELS theory of control (implementable)
* Analysis-agnostic DELS models (system specification)

* DELS Integrated analyses (performance, cost, quality, ...)
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Toward a Theory of DELS Operational Control
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L3 Controller Context

System Modeling Focus Modeling Framework
Directing * Should a task be accepted?
Operational Control Behavior * If so, when executed?

e With which resources?
* What happens next?

O
= ? * Should aresource state
= ge, S
= e change:
@) wn
U o)
Structure Product
Pr
Controlled Domain v _ OCESS
(Base System) Behavior Resource

Facility
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DELS Level 3 Operational Control Assumptions

* Decision execution is Event-driven
* Received signals

* |nvocations of controller behavior

» Operational decisions are State-based

 Decision-making has access to state of resources and tasks

* Operational control is imposed by invoking behaviors of active
resources

* |n controller’'s domain

* |n other controllers’ domains
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SysML Block Definition Diagram DiscreteBventLogisticeSystems [ DELS_Ontology_extended ]/J
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bdd [Block] L3Controller [ AbstractL3ControllerFunctions I/I
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What's missing?

DELS domain specific language (ala VHDL or BPMN)
DELS theory of control (implementable)
Analysis-agnostic DELS models (system specification)

DELS Integrated analyses (performance, cost, quality, ..
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At some point, we must have agreed-upon
standards for defining objects and their
behavior in the DELS domain, in the same
way the ME community has developed the
standards reflected in Modelica.

What is the appropriate level of detail?
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What's missing?

DELS domain specific language (a laVHDL or BPMN)
DELS theory of control (implementable)

Analysis-agnostic DELS models (system specification)

DELS Integrated analyses (performance, cost, quality, ..
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Experience so far:

* Analysis-agnostic system model in SysML is an excellent
requirements document for simulation model development, at least
for some simulation tools

* Robotic logistics hub

* Modular housing manufacturing plant

* It's possible, but fairly ad hoc to automate some analysis model
generation from the SysML models

» Mandrel lifecycle analysis for composite manufacturing

(c) 2022 Leon McGinnis
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Wide-open opportunity

* Define canonical analysis models exploiting the network structure of
DELS system models.

~ (c) 2022 Leon McGinnis
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Canonical Models in OR

* An optimization problem has * For discrete event simulation
the canonical statement: the canonical statement is:
Min cx
s.t. Ax=Db
I
X>0

The consequence is that we can have a The consequence is that the formulation of the
“solver-independent” formulation of the analysis problem is always “solver-dependent”.
analysis problem. The ontology and There currently is no generally accepted
semantics are very straightforward. ontology and semantics for discrete event

simulation (as generally practiced in IE domains).
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Final thought

Question 3: Digital Twin Challenges
Leon McGinnis, GeorgiaTech

What is the common principle or methodology in
contemporary DES technologv?

L3

Ad hoc

, innovation
Where is the ~

common ground
between
simulation and
'/ working fabs?
Ad hoc £
innovation

What is the common principle or methodology in
contemporary fab control system design?
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Four take-aways

* See digital twin idea in a historical context

* Observer vs virtual prototype

* See fundamental challenges of DELS digital twins in that context

* DSL, theory of control, analysis agnostic system models, analysis

* See potential approaches for resolving those challenges

* DELS ontology, DELS L3 control theory, analysis integration

* See a major roadblock to ultimate success

* Disconnect between L3 and the real-time systems at L2,1,0

(c) 2022 Leon McGinnis
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