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1. Introduction

Discrete event logistics systems (DELS) are networks of

resources through which goods and people flow. The DELS notion

covers logistics systems in such diverse areas as, for example,

semiconductor manufacturing, health care, and freight logistics.

DELS have been the subject of a large body of analytic research (cf.,

for example [1–3]). A large number of models exist that generally

require application by model and/or solution experts to answer

narrowly defined logistics questions. It has proven difficult to

integrate the resultant models in any comprehensive way into

information systems like Enterprise Resource Planning (ERP)

systems, Advanced Planning and Scheduling (APS) systems,

Manufacturing Execution Systems (MES), or Supply Chain Man-

agement (SCM) systems, because of the lack of conceptual

alignment between the models produced by researchers and the

information systems deployed in practice with which they should

be integrated. This difficulty is magnified enormously by four

factors (cf. [4]):

1. The scale and scope of global supply networks which may

involve literally thousands of individual enterprises.

2. The dynamic behaviour of these networks, which are constantly

changing as firms enter and leave, products change, markets

evolve, etc.

3. The broad range of information and communication systems

deployed.

4. The high density of decisions, partially enabled by application

systems, but in many if not most cases to be made by humans,

often near real-time.

There is only a small base of theory or methodology for

addressing decision problems that have scope, scale, and

complexity involving all four factors. This paper can be considered

as an extended and refined version of the Dagstuhl Manifesto for

Grand Challenges in DELS (cf. [4]). In the present paper, we

especially put effort on a more systematic derivation of the

various challenges for DELS, and we also discuss the related

literature in more detail. A major aim of this paper is to provide a

good starting point for researchers new in this area. As pointed out

by Hamming [5], it is important for scientists to know the

challenges in their field. Therefore, we hope to stimulate new

high-quality research to tackle at least some of the challenges

described in this paper.

The paper is organized as follows. In the next section, we

introduce the term DELS in more detail. We discuss DELS with

respect to system theory in Section 3. Then we use the perspective

provided in Section 3 to identify challenges for DELS in Section 4.

Finally, in Section 5 we identify future research needs arising from

the challenges described.
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2. Discrete event logistics systems

Networks of resources, through which goods and people flow,

are called DELS. The term logistics refers to the fact that we

consider physical flows. Each node of the network corresponds

to some resource or set of resources by which the materials are

either converted in some way, i.e., refined, shaped, assembled,

disassembled, etc., moved, i.e., transported within one facility or

between facilities, or simply held for some period of time as

work-in-process (WIP) or stored in a warehouse. Material

handling and transportation are key components of DELS. DELS

can be found in such domains as transportation, distribution,

and manufacturing. DELS are discrete because they move

material in discrete quantities, and because their behaviour

can be characterized effectively in terms of events happening at

discrete points of time, i.e., the start or end of some conversion,

transport, or storage process. While logistics systems are

typically discrete, the term ‘‘discrete’’ refers in our understand-

ing to the fact that DELS are not related to production logistics in

process industries, i.e., for example, we are not interested in

manufacturing processes inside a refinery. The third present

author originated the term DELS (cf. [6]).

A DELS may range from simple to complex. They may take the

form of a single warehouse, a portion of a factory, a complete

factory, or a global supply network. In the following, some

examples for DELS are described in more detail.

As a first example, we consider the production of integrated

circuits, also called chips. A semiconductor chip is a highly

miniaturized, integrated electronic circuit consisting of thou-

sands of components. Semiconductor manufacturing starts with

thin discs, called wafers, made of silicon or gallium arsenide. A

large number of usually identical chips can be produced on each

wafer by fabricating the electronic circuits layer by layer in a

wafer fabrication facility. Such a facility is commonly called

a wafer fab. It consists of hundreds of machines (cf. [7]) and a

sophisticated automated material handling system (AMHS) (cf.

[8]). Lots are the moving entities within wafer fabs. The routes of

the lots contain several thousands of processing steps.

Consequently, the cycle time of the lots is between four and

six weeks. Wafer fabrication is widely considered to be

amongst the most difficult of all manufacturing environments

(cf. [9]).

The second example is related to electronics supply net-

works. They consist of wafer fabs, assembly and test facilities,

distribution centres, printed wiring assemblies, and finally

customers. While wafer fab related operations are often

performed in highly industrialized nations, assembly and test

related operations are typically carried out in countries where

labour rates are cheaper (cf. [7]). The global supply chains in the

electronics industry are formed itself by a large number of

subsystems that are also DELS.

The next example is given by the company UPS. The key

services are logistics and distribution, transportation and freight

using air, sea, ground, and rail transport, with services for freight

forwarding, international trade management, and customs

brokerage (cf. [10]). UPS is the leading provider of less-than-

truckload services coast-to-coast in US. It has 400,600 employees

worldwide. The daily delivery volume is 15.1 million packages

and documents. UPS runs over 800 facilities in more than 120

countries.

The last example is from the health care domain. The Mayo

Clinic is one of the largest service providers in this domain. More

than 55,000 doctors, scientists, students and allied health staff

work and study at Mayo Clinic campuses at different locations in

US (cf. [11]). Mayo Clinic cares for more than half a million people

each year.

3. System theory point of view on discrete event logistics

systems

This aim of this section is to unify the diverse picture of DELS

presented in Section 2. We use insights from system theory to

reach this goal. According to Grochla [92], an enterprise can be

decomposed into the following subsystems:

� Base system.

� Operative system.

� Control and monitoring system.

� Planning system.

Note that the enterprise interacts with its environment. The function-

ality provided by the different subsystems is sketched in Table 1.

The obtained decomposition of a single enterprise is shown in

Fig. 1.

It is possible to associate a corresponding process with each of

the subsystems. The base process, for example, transforms raw

materials into final goods in a manufacturing related context. The

base process is characterized by its use of the resources of the base

system in activities related to the working objects. In a

manufacturing context, these activities correspond to operations

performed on jobs. The planning and the control process describe

the circumstances in which the planning and the control and

monitoring systems are used. The planning, control and monitor-

ing system, the operative system, and finally human actors form

the information system of the enterprise. Fully automated parts of

the information system are called application systems. According

to Anthony [12] it is differentiated between strategic planning, i.e.,

management activities regarding overall goals, management

control, i.e., middle management guiding the organization towards

meeting the goals, and finally operational control, i.e., first line

supervisors directing specific goals (cf. [13]). In our framework, the

planning system supports strategic planning and parts of the

management control, while the control and monitoring system

supports management control and also parts of the operational

control. The operative system finally supports the operational

control that is closely related with base system and base process

related decisions. It should be pointed out that according to Simon

[94] the decisions that are treated by the planning system are

typically ill-structured or semi well-structured, while the decisions

made by the control and monitoring system often are well-

structured. Therefore, planning decisions are typically less

automated than control decisions.

Note that a similar decomposition into subsystems can be

derived for logistics networks. We obtain a system of systems.

Table 1

Decomposition of an enterprise into subsystems.

Subsystem Description

Base system Responsible for transferring commodities

into products in course of rendering goods

and services. Represents the resources and

also the working objects.

Operative system Immediate planning, control, and monitoring

of the base system

Control and

monitoring system

Calculation of control instructions to connect

the operative system with the planning system.

Because of the longer horizons in the planning

system, aggregation and disaggregation functionality

is provided by the control and monitoring system.

Planning system Calculation of plans that are used to fulfil the

goals of the enterprise taking information from

the environment and the remaining subsystems

into account.
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However, in this situation the different subsystems that corre-

spond to different nodes of the network are typically distributed.

We will later use the resultant decomposition of the networks to

identify challenges.

Because application systems are the fully automated parts of

the information system, they can be considered as adaptive

systems. A system is called adaptive if the planning and control

instructions are generated automatically, i.e., without disposition

of human decision-makers (cf. [14] for a discussion of adaptive

systems within the context of feedback-control systems). It is

important that adaptive systems maintain internal models of the

base system and process to adapt to the environment. Such models

are necessary to derive decision models. These models are typically

computational models (cf. [15]). Each application system for

planning or control consists of two components. There is an active

component that is used to derive planning or control instructions,

and there is a passive component that represents the underlying

base system and process.

Next, we briefly discuss how different systems can interact

within a distributed hierarchical system. According to Schneeweiss

[16], the decision-making provided by a single planning and

control system can be formalized using a decision model

Mt :¼ ðC; A; ItÞ; (1)

where we denote C as preference structure (criterion), A as decision

field (action space), It as information status at time t, where the

decision is made.

The preference structure is given by single or multiple

objectives of the decision-making entity, whereas the decision

field describes the set of feasible actions with respect to the

constraints to be fulfilled. The decision field is given implicitly by

sets of constraints. Finally, the information status of a decision-

making entity is provided by information of its own internal and

external situation [16]. Furthermore, it contains information about

the internal and external situation of other decision-making

entities and also information about the information status of other

decision-making entities, although this information may be more

aggregated and less reliable than information about its own

internal situation and external situation. The later point means

that it is also important for a decision-making entity to know what

other decision-making units can know in principle. It is clear that

the information status contains the internal model of the base

system and process as a subset.

Based on the notion of decision models given by expression (1),

there are different possibilities for the decision-making behaviour

of an application system for planning and control to be impacted or

changed by some other system, for example, when two systems are

in a hierarchical relationship. It is possible to change the preference

structure C. Moreover, we can also change the decision field A.

These two possibilities are also called goal modification in the

literature. The last possibility is given by changing the information

status, for example, by providing a different internal model. The

term image modification is common for this kind of change. Note

that in organization theory goal modification is called manage-

ment-by-objectives, while image modification is called manage-

ment-by-exception (cf. [14]).

The preference structure can be interpreted as a principal-agent

relationship (cf. [16,17]) between the intervening entity, the top-

layer in the hierarchy, as principal and the changed system as

agent. Principal-agent type relationships are well studied in

organization theory. The principal concludes a contract with an

agent. The preference structure transferred from the principal to

the agent can be seen as some specification of a contract. The agent

provides the principal with services. But the principal has usually

incomplete information about the behaviour of the agent. This type

of inherent information asymmetry is typical for decision-making

in DELS.

4. Identification of challenges

Our identification of challenges is based on the different

subsystems shown in Fig. 1. We differentiate between modelling

and decision-making related issues. In the next section, we discuss

modelling issues for DELS. Then, we continue with challenges

related to the deployment of DELS models. Finally, we also discuss

challenges related to decision-making in DELS.

Fig. 1. Decomposition of an enterprise into subsystems.
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4.1. Modelling issues for DELS

4.1.1. Introduction to modelling problems

We start by describing modelling problems for DELS. Taking a

simulation point of view, the term modelling refers mainly to

modelling the base system and operative system and to a lesser

degree, to modelling the planning system and the control and

monitoring system. However, the decision-making perspective of a

DELS is derived from the planning and control system. Of course,

we need decision models for decision-making in DELS. A decision

model is defined as a formal description of a decision problem

according to expression (1). In this sense, we associate the terms

decision model and optimization model. Decision models, for

example a linear programming model, can be populated with data

using the internal model of the base system that is maintained by

the planning system and by the control and monitoring system.

When we talk about building a DELS model, we have to address

models for the base system, the operative system, the control and

monitoring system, and finally the planning system. However,

often it is impractical to model all these subsystems at the same

level of detail. For example, when we are interested in studying the

impact on cycle time of a certain sophisticated dispatching rule in a

wafer fab, we may assume that the job release times or rates are

given. Of course, job releases are a result of a decision made by the

planning system. Thus, in this case, the planning system is not

modelled in detail, but is represented by a relatively crude

approximation. On the other hand, when we are interested in

assessing product mix decisions in a wafer fab, we model the part

of the planning system, i.e., a specific planning algorithm that is

responsible for these decisions, but dispatching may be modelled

by a simple First-In-First-Out (FIFO) dispatching rule that is

already included in the simulation package. Note that we have to

model the base system and process in both situations. The different

submodels that have to be taken into account are summarized in

Fig. 2. Typically more than one decision model is available.

4.1.2. Multiple levels of abstraction

We start by describing simulation modelling efforts to

represent the base system. These models are usually descriptive

by nature, i.e., we are interested in understanding the system

behaviour. At this stage of identifying challenges, we are explicitly

not interested in the planning system and the control and

monitoring system.

Over the past two decades significant progress has been made

with regard to simulation modelling of single nodes of a DELS. For

example, in 1990 it was considered quite a challenge to build a

simulation model for an entire wafer fab, or for the automated

material handling within a wafer fab (cf. [18]). Today, developing

these models is much easier and almost standard (cf. [7]). There are

a couple of reference models for single wafer fabs available on the

web (cf. [19]). However, it is still challenging to integrate

simulation models for job processing with simulation models

for automated material handling.

There are approaches in the literature that address the

modelling of entire supply chain networks (cf. [20–23] amongst

others). Various simulation paradigms that are appropriate for

simulating entire supply chains are described by Kleijnen [24]. The

paradigms discussed include discrete-event simulation and

system dynamics (SD). However, the studies described in the

literature typically consider only an extract, i.e., often a very small

part, of real supply chains. Therefore, it is rather challenging to

build simulation models of supply network at various levels of

abstraction of various level of detail from a common data

description. This modelling step has to include the time-dependent

and/or stochastic behaviour for several stakeholders. The ability to

create such models is essential for achieving horizontal integration

Base system/Model of the Base System

Internal Model of the Control and 

Monitoring System

Internal Model of the Planning System Decision Model 1

Decision Model 1

Decision Model k

Decision Model l

…..

Model of the Operative System

Fig. 2. Subsystems/submodels of a DELS model.
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of various submodels. The integration across the material flows

from initial supplier to final customer, including any closed loop

recycling, can be achieved by doing so. An interesting approach to

combine SD and discrete-event simulation to model supply chains

is presented by Venkateswaran et al. [25].

Often it is necessary from a computational point of view to deal

with aggregated or reduced simulation models. Such models are

often intended to answer more strategic questions. They have to be

derived from available operational data. The capability of model

reduction is essential for achieving vertical integration of models,

i.e., integration from the strategic decision level down to the real

time operational level.

The criticality of detailed modelling in a supply chain

simulation context is discussed by Jain et al. [26]. An interesting

approach for a compact representation of an entire wafer fab using

empirical cycle time and throughput distributions is presented by

Duarte et al. [27]. However, an extension of this approach to

networks of nodes is not available so far. In contrast to the situation

of single wafer fabs, reference models for entire supply networks

are not available in semiconductor manufacturing, although their

need has been recognized (cf. [28,29]).

Apart from vertical integration, there is often a need for a

horizontal integration of simulation models. Such an integration

must be accomplished, for example, in distributed simulations.

Examples for the simulation of supply networks in semiconductor

manufacturing are described in [30–32]. However, applying

distributed simulation is itself a challenge as described by

Lendermann et al. [33].

Therefore, when considering a supply network in semiconductor

manufacturing that typically consists of dozens of wafer fabs and

dozens of backend facilities, a reduction of each single node is

necessary to run the model from a computational time point of view.

4.1.3. Unified DELS language

Another fundamental challenge is the creation of a unifying

language for the description of DELS models. Several attempts have

been made in the ontology community to create ontologies related

to DELS. An ontology is defined as a model of a particular field of

knowledge, the corresponding concepts and their attributes, as

well as the relationships between the concepts (cf. [34]). An

ontology always includes

1. A conceptualization of a domain, i.e. how to view and model a

domain.

2. A specification of this conceptualization, i.e. basically a formal

description.

We refer for example to the Enterprise ontology (cf. [35]), the

OZONE ontology for scheduling systems [36], CEO, a core enterprise

ontology (cf. [37]), and the FABMAS ontology for production control

of wafer fabs [38]. The development of ontologies for manufacturing

from an IT point of view is discussed in [39]. However, a widely

accepted universal ontology for manufacturing is still not available.

Creating a high-level but universally useful abstraction of DELS

that addresses resources, working objects, physical flows, and

interactions amongst subsystem and is applicable across a broad

range of industries, organizations, geographic, and temporal scales

is highly desirable because it would be allow to reduce the efforts

for simulation modelling to a large extent. We refer to [6] where

such an abstraction is provided for warehouses. At the same time,

the enterprise application integration would be significantly

easier. Such an abstraction might be applied in two steps:

1. Using these abstractions to identify domain-specific attributes

of particular classes of DELS, such as transportation networks,

warehouses, wafer fabs, assembly factories.

2. Exploiting the universal abstraction and the domain specific

models to create modelling libraries for decision-based appli-

cation development.

Clearly, the model-driven architecture approach from software

engineering provides an example of how this challenge might be

approached. The model-driven architecture approach has been

applied to developing simulation models using SysML (cf., for

example, [40] for continuous simulation, and [41] for discrete

simulation), a modelling language that is based on the Unified

Modelling Language (UML). However, while the base system and

process can be modelled by means of SysML, there are still challenges

with regard to universal representation of the control logic, and more

generally, with regard to the representation of time and time-

dependent issues within SysML models. However, dealing with the

time-dependency is necessary when we are interested in modelling

appropriate representations of the different processes in a DELS.

Another challenge is modelling collaborative processes in DELS.

Here, traditional modelling techniques like Integrated DEFinition

for Process Description Capture Method (IDEF3), Petri Nets, and

UML are often not appropriate. In [42] a collaborative process

modelling technique is proposed. The resultant models can be

transformed into marked graph models, and Petri nets techniques

can be used to analyse them.

4.1.4. Non-DELS specific modelling issues

A simulation model of a DELS often does not represent simply

the base model and process of the DELS (see Fig. 2), rather it also

represents certain parts of the planning and the control and

monitoring systems because, for example, capacity expansion

decision or product mix decisions have to be made or jobs have to

be released. Note that we are not interested in describing

challenges that occur when designing a new planning or control

and monitoring system in this subsection. Rather we are interested

in assessing an existing DELS. Even in such a situation, several

challenges need to be addressed. These issues are typically

important to a domain broader than DELS.

One challenge is the development of modelling approaches that

can cope with systems when there is incomplete or even

conflicting knowledge of logistics policies, or logistics participant

information, or incomplete data in very large-scaled networks.

Another challenge arises when combining lumpy, i.e., discrete,

and continuous systems. For example, lumpy decisions are

associated with capital expansion while the more continuous

decisions are associated with real time control. Developing

approaches for the integration of different modelling techniques,

even hybrid approaches seem to be important in this context. The

integration of IDEF3 and queuing models is discussed by Jeong

et al. [43]. There are also approaches that combine discrete-event

simulation and SD. Another interesting example is the incorpo-

ration of cluster tools in simulation models of full wafer fabs. A

cluster tool is a mini wafer fab with a sophisticated control logic (cf.

[44]). Often Petri nets are used to model such a control logic. While

the number of cluster tools is increasing, up to now there is no

technique known to model these tools in a reasonable way within

large-scale simulation models of wafer fabs.

An additional challenge how to incorporate non-technical

aspects, i.e., contracts, behaviours, principal agent issues, of DELS

operations within a simulation model (cf. [45–47]).

Finally, modelling approaches for portraying human involve-

ment and decision-making in using decision support tools are also

rather challenging. Here, the main goal is to understand human-

decision making and to improve the quality of simulation models.

A combination of simulation and artificial intelligence techniques

is used (cf. [48–51], amongst others). Much more research is

needed in this area as well.
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4.1.5. Modelling related to operative systems for DELS

We continue by discussing the models that are contained in

operative systems. These systems serve as container for data

models that are updated in an event-driven manner whenever

changes in the base system occur. However, it often turns out to be

difficult to deal with a large number of products, often variants of a

relatively small number of different base products because product

modelling is still hard (cf. [52]). A customer who orders a computer

can choose different combinations of monitor, CPU, keyboard, and

memory. Because of the combinatorial explosion not all variants

can be stored directly in an operative system. Characteristic based

planning (cf. [53]) tackles this problem by using characteristics to

describe a certain product family. These characteristics can refer to

the structure of the product based on the bill of material and

different possibilities to produce a certain product expressed by

different routes. Finally, it is also possible to process several

products within one production run, taking into account the values

of the characteristics. The first two possibilities are called variant

configuration, while the latter one is called batch management.

Although the concept of characteristic based planning turns out to

be rather interesting, it seems that is not widely accepted in both

research and real-world applications (a rare exception is [54]).

Hence, it seems necessary to look for different ways to deal with

complex configurable products.

4.2. Deployment issues for DELS related models

Next, we consider challenges that are related to deployment of

DELS models. Deploying models in real-world applications

requires adaptation of the models to a particular application in

two different ways:

1. Populating the models with available data.

2. Adapting the models to the decision-making process.

Because models have to be based on data to be useful they must

be integrated with application systems. This presents challenges

on several levels, from understanding clearly what data should be

available in the application system, to the details of the specific

software interfaces needed to access the data that is available to

populate the models.

On the other hand, decision models and internal models are

intended to support decision-making (see Fig. 2), but the decision-

making process itself is often somewhat ad hoc, especially with

regard to strategic planning decisions. A model that can only

answer one very specific and/or narrowly defined question may

have limited utility if the strategic decision-making processes

require addressing of other related questions. Considering these

factors, several challenges associated with model deployment for

DELS can be identified.

4.2.1. Dealing with the inherent distributed nature of DELS

First, we discuss challenges that are a result of the inherent

distributed nature of DELS. It is necessary to establishing

standards for re-usable plug-and-play model components and

data structures in application systems and their interoperation.

It is increasingly important that the different application

systems and also the corresponding models are able to quickly

communicate with each other and with their environment (cf.

[55]). One partial solution to this challenge is the High-Level-

Architecture (HLA). It is a general-purpose architecture, mainly

for simulation model interoperability. Each simulator or other

application system forms a separate federate, i.e., is executed as

a separate process. All the different federates form a federation.

Federates can be implemented individually using different

software technologies and hardware (cf. [55]). However, the

number of successful applications is limited (cf. [31,56];

amongst others). There is still an ongoing controversy whether

distributed simulation and HLA especially are useful or not (cf.,

for example [33,57]).

Another challenge is the design and development of better

methods and tools for distributed modelling of supply network

operations and control to solve the ‘‘System of Systems’’ problem

for DELS.

It is necessary to close the gap with respect to modelling the

system state between the base system and the planning and

control and monitoring system. These challenges coincide with

challenges that were identified by the US NSF Commission for

Visionary Manufacturing Challenges for 2020 (cf. US [58]). They

published a report where they identified ‘‘Grand Manufacturing

Challenges’’. Amongst these challenges are the instantaneously

transformation of information gathered from diverse sources into

useful knowledge for making effective decisions.

This is hard for DELS because the base system and also the

information system itself are distributed systems. Therefore, we

have to deal also with interoperability problems on the informa-

tion system level. As in any distributed system, we have to

determine how much data redundancy is allowed to reduce the

communication effort between the different horizontal and also

vertical subsystems of the information system. It seems that web

services can help to reduce this kind of interoperability problems

(cf. [59] for applications in manufacturing).

4.2.2. Model persistency issues

It is also required to shorten the cycle time for model

generation and maintenance. It is well known that the

development of a simulation model is very time consuming.

This leads to a smaller number of experiments that can be

performed using this simulation model. Therefore, we need a

technology to keep models persistent, i.e., to maintain them so

that they are always consistent with the system being

represented [55]. While there is some experience for automati-

cally building simulation models from operative systems in

simulation-based scheduling (cf., for example [60]), little is

known for modelling entire supply chains.

There is also a need for approaches and methodologies to

support the evolution of planning and control and monitoring

systems, leading to the creation of models to design systems with

the ability to learn – so they do not break abstractly because they

are able to adapt to the current situation. Base models for learning

agents are proposed by Bierwirth [14]. Zimmermann [61]

discusses adaptive multi-agent-systems for production control

using machine learning techniques. However, considerable human

intervention is still required.

Finally, approaches, methods, and tools are required that allow

us to take into consideration the fact that there are soft boundary

conditions in a model that can be violated, up to some unknown

limit.

4.2.3. Data availability and quality

Methods and tools are needed to take advantage of the wealth

of empirical data that are collected during the operation of DELS;

these data should inform the design of future DELS, even if future

requirements are different from past experience.

Furthermore, theories, methods, and tools are needed for

dealing with multiple data sources, high-density data streams,

errors, uncertainty, conflict, etc. These problems are long lasting

(cf. [62]), but it seems that a transfer of academic research into

real-world applications is still made difficult by missing data or

low data quality (cf. [63]). It seems necessary to do more research

on data mining techniques to deal with missing or wrong data in

enterprises (cf. [64]).
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4.3. Decision-making issues for DELS

The decision-making cycle consists of building a decision model

based on data available in the internal model. Subsequently,

decision-making methods, algorithms, are used to determine

actions from the decision field. A choice consists of analysing the

alternatives and then choosing one. At the same time, human

decision-makers can be involved in analysing and choosing actions

when the decision-making process is not fully automated. This is

often the case when the related decisions are ill-structured. The

described situation is shown in Fig. 3.

In this subsection, we discuss the decision-making component

shown in Fig. 3, while the development of decision models is

already covered in Section 4.2. Note that the decision-making

component and the decision model form the active component,

while the internal model is passive with respect to decision-

making.

4.3.1. Decision algorithms in DELS

We start by discussing challenges with respect to decision

algorithms that are a major part of the planning and control and

monitoring system. The first challenge is related to the emergence

of sustainability as a major concern (cf., for example [65]).

Therefore, the decision models need to consider criteria that may

be quite different from those in the large body of legacy models,

e.g., energy or water consumption, carbon emissions, or total

environmental footprint. Some interesting examples for produc-

tion planning algorithms that consider such new criteria that are

related to carbon emission are provided by Benjaafar et al. [66] and

Absi et al. [67].

A second challenge is given by approaches for automatically

finding the appropriate type of (meta) heuristics and parameters,

including auto-calibration, for a given DELS decision problem. Even

questions that at a first glance look simple, like what are

appropriate parameters in a composite dispatching rule, require

tools from machine learning, statistics, or optimization. Neural

networks and inductive decisions trees are used in Mönch et al.

[68] to tackle this problem, while Dabbas and Fowler [69] use

simulation and designed experiments to create a response surface

model of the base system and process of the wafer fab.

Optimization techniques are then used to select appropriate

weights in the combined dispatching rule. Pickard et al. [95] uses a

simulation model of a wafer fab to assess the performance of

dispatching rules. Genetic programming is used to find new

dispatching rules. However, it seems that the massive application

of offline simulations required for assessing performance, creating

a metamodel, or determining training data hinder a wide

acceptance of these methods in real-world application.

There is still a need to design distributed hierarchical planning

and control algorithms for DELS (cf. [16]). There is a lack of

knowledge about how to implement such algorithms from a

software technology point of view. It seems that software agents

and the corresponding multi-agent-systems are appropriate.

However, many more examples and case studies are needed to

finally evaluate this proposal.

It is still hard to find approaches and specific methods for

describing the capabilities of solution approaches in order to select

appropriate decision support methods for a given situation. In the

past, often knowledge-based systems were used to assist the

decision-maker with an appropriate algorithm. It seems that such

method bases developed using database technology (cf. [91]) tend

not to be successful. However, it would be clearly desirable to have

some guidance when an appropriate solution method is selected

for a specific planning or control problem.

Despite the existing body of theory and applications (cf. [70]

amongst others), there still is a need for useful techniques for

multi-objective problems. It is well-known that considering

multiple, often conflicting, objectives lead to better decision-

making. A multi-criteria scheduling approach for complex job

shops is discussed by Pfund et al. [71]. Often even solutions

obtained by multi-criteria algorithms outperform solutions that

are derived by algorithms that use only a single criterion (cf. [72]

for an example in scheduling for complex job shops).

Another challenge is the design of decision-making algorithms

covering a collaborative environment where independent actors

have to align their local interests under common interests, i.e., if

one of the partners fails – all together will fail. An interesting

example is given by the airport collaborative decision-making

initiative in Europe (cf. [73]). The main result is a more accurate

Target Take Off Time which can be used to improve en route and

sector planning of the European Air Traffic Management (ATM)

Network. A multi agent system that supports collaborative

decision-making in a supply chain is proposed by Ouzrout et al.

[74]. Collaboration without sharing all the confidential data is

supported by negotiations between the agents that represent the

different decision-makers within the supply chain. Often software

Fig. 3. Decision-making cycle.
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agents are used to solve this kind of collaborative planning and

control problems (cf. [75]).

There is also a great need for an integrated framework that

enables the simultaneous use of both simulation and optimization.

A closely related challenge is the development of approaches for

the integration of different modelling techniques, for example,

discrete-event simulation, mixed integer programming, queuing

models, even hybrid approaches. We refer, for example, to Hung

and Leachman [93], Kim and Kim [76], and Irdem et al. [77] where

linear programming models are combined with discrete-event

simulation for derive planning instructions for a single wafer fab. In

this context, simulation is used to determine a load-dependent

cycle time, whereas the production planning approach determines

order release quantities assuming a given cycle time. A similar

technique is used by Almeder et al. [78] in a supply chain context

including also transportation between the nodes of the supply

network. But an extension of these ideas to supply networks of

real-world size is not straightforward.

Because of the huge progress made in information technology

in the last decade, parallel computing capabilities have to be

exploited in solving DELS related decision problems. This fits well

with the recent increasing importance of grid or cloud computing.

Based on high throughput computing software like Condor (cf.

[79]) or software to build grids like the Globus toolkit (cf. [80]) it is

not hard to use parallel technologies in enterprises. A parallel

scheduling heuristic for complex job shops that is run on a cluster

computer system and can be run in principle also on a grid is

described in [81].

Planning and control and monitoring systems are often

implemented as packaged software. It is hard to incorporate more

sophisticated decision models and algorithms into these software

systems. For example, an MES offers some dispatching and

scheduling functionality. However, application systems different

from the MES are used for dispatching and scheduling in most

wafer fabs (cf. [82]). Therefore, it is often a challenge to find

appropriate coupling architectures for the packaged systems and

the various out-of-the-box software systems. In this setting, the

packaged systems act as operative systems.

4.3.2. Quality of decisions

After decision-making, the quality of solutions has to be

assessed. There is an unmet need for performance metrics and

methods to assess the quality of solutions coming from decision

support models. The corresponding performance measures should

include risks, robustness, and stability.

Robustness and stability are two important attributes of

predictive plans/schedules (cf. [83]). A predictive plan/schedule

is called robust, when the quality of the eventually executed plan/

schedule measured based on working objects in the base system is

close to the quality of the predictive plan/schedule. A predictive

plan/schedule is said to be stable if the decisions made in the

eventually executed plan/schedule are close to the decisions made

in the predictive schedule. In case of low quality plans/schedules

usually there is no conflict between robustness and stability. The

low quality can be maintained without changing any decision. On

the other hand, if we have a high-quality plan/schedule, then there

is a tradeoff between robustness and stability. A plan/schedule can

be stable but not robust. In this case, we simply do not change

decisions. Therefore, usually the performance of the executed plan/

schedule will be less compared to its predicted performance. In

contrast, a plan/schedule can be robust but not stable. Here, we

change the plan/schedule as much as required to achieve the

expected performance. Different stability measures for planning

are discussed in [84].

As already discussed, stability and robustness refers to executed

plans/schedules. Because of uncertainty in demand, resource

availability, processing times etc., often rolling horizon approaches

are applied to deal with the divergence of executed plans/

schedules from predicted plans/schedules. The plans/schedules

are executed within the base system. Therefore, simulation is

necessary to represent the base system and process appropriately.

It seems that simulation-based performance assessment of

planning and control is not widely adopted, mainly because of

the large effort to build the simulation models and because of the

large amount of computing time to perform a simulation

experiment. The latter is caused by the repeated determination

of the plans/schedules during a single simulation run.

Some applications of the simulation-based performance

assessment in manufacturing are discussed by Mönch [85]. A

similar approach is used in the cooperative transportation domain

(cf. [86]). While these approaches work well for a single enterprise

or a small or medium-sized logistics network, only little is known

about its feasibility in case of large-sized DELS. Note that the

simulation-based performance assessment approach allows, in

principle, studying the performance of entire planning systems

and control and monitoring systems. A main advantage of such an

approach consists in the possibility to assess the performance

before the application system is deployed.

Besides engineering performance measures like cycle time,

throughput, or on-time delivery, it is becoming even more crucial

to be able to quantify the monetary value generated by decision-

making algorithms and by decision support systems. Furthermore,

robust decision-making tools with real-time capabilities are

needed that explicitly consider performance measure trade-offs,

rather than simply optimizing some criterion. It is well-known

from production planning applications that optimal solutions with

respect to a certain performance measure often have a low

performance in an uncertain environment. Therefore, new theories

and approaches that enable highly sustainable and robust

performance by exploiting dynamic networks in open supply

webs are highly desirable.

As DELS and their decision support systems become even more

complex, it is important for decision support systems to explain

what they suggest when the suggestion is not intuitive (cf. [87] for

the discussion of self-scheduling capabilities in nurse scheduling).

A component that explains its solutions to the users might reduce

the lack of acceptance.

As DELS and the corresponding planning and control and

monitoring systems become more complex, they need capabilities

for self-diagnosis and automated error checking. They should be

capable of automated analysis of results, and for providing

explanations of the results to their users. Such self-healing

planning and control and monitoring systems are highly desirable.

However, it seems that the design and application of such software

systems is in a very early stage (cf. [88]).

4.3.3. Crossing boundaries

Increasingly, DELS grow organically, often with distinct DELS

joining at least temporarily to accomplish some goal. In this

setting, there are many boundaries crossed on a routine basis – not

only between organizations within a single enterprise but across

enterprise boundaries. This leads to different types of challenges.

Coordinating decision-making when crossing the boundaries of

several enterprises, requires embedding quantitative decision

support into collaborative decision-making within the DELS

domain. Collaboration across DELS boundaries requires an ability

to smoothly integrate information/decisions in multiple DELS.

Here, it seems necessary to define appropriate standards for the

information exchange. Electronic Data Interchange For Adminis-

tration, Commerce and Transport (EDI/EDIFACT) and several XML-

based data formats seem to be not flexible enough for large-scaled

DELS.
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Effective collaboration requires consistent re-usable key

performance indicator (KPI) classes with (dis-)aggregation func-

tionality. It seems that aggregation and disaggregation is the

subject for research for a long time (cf., for example, [89]), but it is

still challenging and there is still a lack of widely accepted methods

to do it.

5. Some future research needs

In this section, we translate the challenges identified in Section

4, into more concrete research needs for the near future. Of course,

this selection might be biased by our own preferences and it might

be possible that some subjects are omitted.

It seems that a major problem that is touched by many

challenges is the inability to model large-scaled, real-world supply

chains in a timely, cost-effective way. Therefore, it is highly

desirable to find methods for reasonable model reduction that

allow for simulating such supply chains. Applications for simula-

tion-based performance assessment and also for network design

are a consequence of this capability. Closely related is the question

of reference models for large-scaled DELS. While for single

enterprises in specific domains such reference models are

available, this is not true for large-scaled DELS. However, their

existence would drastically increase the comparability of planning

and control algorithms for DELS.

Future research effort should be devoted to the design and

development of a universal DELS language. It seems interesting to

extend research on graph transformation (cf. [90]) and UML to this

universal DELS language. This would reduce the effort for

generating simulation models from data in the operative system

to a large extent. Furthermore, the universal language could be

used to transform simulation models for a given simulation engine

into the format of a different simulation engine. In addition, the

simulation-based performance assessment of planning and control

systems for DELS would be made easy.

More research is also needed for distributed hierarchical

algorithms. Here, we can differentiate between vertical and

horizontal integration. It is highly desirable to study the

interaction of the planning system and the control and monitoring

system for concrete application scenarios. Here, we also have to

look for appropriate domain-specific aggregation and disaggre-

gation techniques. It seems important to take the uncertainty into

account, at least on the upper levels. Appropriate software

representations are necessary that serve as a platform for the

different algorithms. This is especially useful in a distributed

setting. Parallel computing techniques can be used to tackle

subproblems that are a result of horizontal decomposition.

More effort is needed on considering multi-criteria decision-

making approaches for DELS. Such approaches are heavily based on

the assumption that the preferences of the users can be modelled.

We expect that the acceptance of the DELS algorithms can be

significantly increased through this work.

In order to design truly adaptive application systems, new

methods to offer capabilities of the planning system and the

control and monitoring system to adapt to certain situations in the

base system and in the environment have to be researched. It

seems that techniques beyond traditional machine learning are

required to tackle this type of problems.

As explained within Section 4.2, missing data and low data

quality is a major barrier in transferring results from academic into

real-world applications for DELS. Therefore, more research is

needed to overcome this weakness. Because more and more data

are available in the today’s operative systems, we strongly believe

that data mining techniques have to be used to deal with missing

or erroneous data.
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