
Proceedings of the 2012 Winter Simulation Conference

C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A.M. Uhrmacher, eds

SYSTEM MODELING IN SYSML AND SYSTEM ANALYSIS IN ARENA

Ola Batarseh

Leon F. McGinnis

The School of Industrial and Systems Engineering

Georgia Institute of Technology

Atlanta, GA, USA

ABSTRACT

A Model Driven Architecture approach is employed to support the practice of discrete-event simulation.

OMG’s System Model Language, OMG SysML™, is used to define a platform independent model (PIM)

and auto-translate it into an appropriate platform specific model (PSM). The implementation and the na-

ture of the transformation from PIM to PSM are clearly addressed to enable: (i) formal modeling of sys-

tems using their own semantics in SysML, (ii) SysML model verification and validation by stakeholders,

(iii) automatic translation of system models expressed in SysML into analysis models as the PSM, and

(iv) maintainability of this approach to accommodate system changes and extensions very easily. The

proposed approach can be used for any analysis tool and application domain. In this paper, we choose to

model transaction-based examples elicited from the manufacturing domain in SysML and translate them

into Arena™ models using the Atlas Transformation Language.

1 INTRODUCTION

Discrete-event simulation (DES) tools are used to assess complex systems when analytical approaches are

not possible. Therefore, the systems that are usually the good candidates for DES analysis are complex

with multiple stakeholders. These stakeholders use ad-hoc methods to conceptually model their systems

and transfer their inputs to the simulation analysts to understand the system scope for analysis. These ad-

hoc methods have no standards or structure to follow and can take various forms such as documents, dia-

grams, databases, etc. We propose using a model-based system engineering approach to support the mod-

eling of systems for DES analysis. Our motivation is to eliminate the use of the ad-hoc methods to model

the system, and to reduce the cost, time, and efforts in building the simulation models.

 Using ad-hoc methods to represent the system of interest impacts the fidelity of the communication

between the stakeholders which may introduce doubt as to whether the simulation analysts have grasped

fully the intent of the stakeholders. In order to ensure that the simulation analysts receive the right infor-

mation, significant time and effort are consumed in this phase of any simulation project. Moreover, the

informality of these methods hinders the re-usability of the system descriptions or investigating automatic

model transformations. Modeling systems in this way is an arcane task for all the stakeholders’ involved.

After all the efforts consumed to transfer the required system knowledge to the simulation analysts,

the simulation models are manually coded based on the analysts’ acquired knowledge. The manual efforts

for coding may take many man-hours, and the associated cost sometimes is a reason to avoid using DES

analysis. Simulation analysts use some ad hoc approaches to save time in building the simulation models

such as copying and pasting with some modifications, or perhaps by developing templates, libraries, or

simulators. Furthermore, the validation of these simulation models can only be done directly by the simu-

lation analysts as they are the experts in this area. The process owners will only be able to compare the

Batarseh and McGinnis

simulation model results to the anticipated values for verification purposes; to them, the simulation mod-

el is a black box.

This paper addresses a solution for these problems faced in the practice of DES. This solution propos-

es developing the conceptual models between the stakeholders using a formal application domain lan-

guage, referred to as a domain-specific language (DSL). The System Modeling Language (SysML) is cus-

tomized to create this DSL, and also to develop a meta-model for the target simulation solution

(Weyprecht and Rose 2011). This solution is based on the Model Driven Architecture framework

(http://www.omg.org/mda/). It is initiated with a platform independent model which is translated into a

platform specific model—a simulation model—using transformation technologies. The mapping between

these models is essential for realizing the transformation.

Prior research has established the feasibility of applying the MDA approach to the creation of simula-

tion models (McGinnis and Ustun 2009, Batarseh and McGinnis 2012). The essential concept is to create

a DSL for a domain of application in SysML e.g., electronics assembly, warehousing, or supply chain

management, and create a model transformation to a particular kind of analysis model, e.g., discrete event

simulation. The system of interest is described using the DSL, and the resulting model is transformed au-

tomatically to an analysis model. What has not been adequately addressed are the fundamental issues as-

sociated with creating the DSL and the transformation, so this paper address the question “How should

one set about to actually deploy this methodology using SysML as the formal modeling language?”

This paper is concerned with discrete event simulation as the analysis tool of interest; nevertheless,

the proposed framework can be applied to other analysis solutions such as optimization, queueing net-

works, and financial models, etc. This paper uses Arena as the DES tool of interest. Furthermore, Atlas

transformation language (ATL) is used in this work to establish the transformation from SysML to Arena.

The manufacturing domain is used to illustrate the implementation of the proposed approach.

 The remainder of this paper is organized as follows. Section 2 reviews related topics. In Section 3, we

describe our proposed approach to enable the auto-generation of simulation models to Arena. In Section

4, we present the description of the analysis tool profile. In Section 5, we explain the use of this profile to

build model libraries as the problem DSL. Section 6 illustrates the use of transformation technologies to

pertain the desired transformation. Finally, Section 7 concludes this paper.

2 BACKGROUND

In this section, we introduce SysML as the desired modeling platform for a DSL to create the PIMs, and

the technology for the transformation of the PIMs into PSMs.

2.1 System Modeling Language

The Unified Modeling Language (UML) is an industry standard for a general purpose modeling language

for object-oriented software development, maintained by the Object Management Group, OMG

(http://www.uml.org/). OMG has created the System Modeling Language, SysML, standard as an exten-

sion of UML to support modeling of complex systems that involve humans and hardware as well as soft-

ware components (http://omgsysml.org/). SysML reuses a subset of UML and provides additional model-

ing capabilities for requirements and parametric relationships, and augments the UML activity, block

definition, and internal block diagrams. While it is a formal language, conforming to Meta-Object Facility

MOF, it has a graphical user interface, making most diagrams relatively easy to understand.

SysML has a growing user base, largely in the aerospace and defense industries (Gedo 2012). SysML

offers two possible ways to create DSLs--model libraries and profiling (Selic 2007). A model library con-

tains a set of reusable model constructs for a given domain. Profiling extends the SysML language using

stereotypes that add new reusable language concepts in a manner similar to the way SysML is developed

from UML. Both mechanisms to customize the language are valid and have been used in a number of ap-

plications. They may be combined, i.e., first extend the language with a profile and then create library ob-

jects using the language extension. However, each approach supports DSL development in a different

http://www.omg.org/mda/
http://www.uml.org/
http://omgsysml.org/

Batarseh and McGinnis

way and adopting one over the other is a significant decision because of its impact on development of

model transformations that translate the problem statement in the DSL into an analysis model which will

be solved using a specific solver technology. However, these efforts have varied in their approach.

Adapting MDA to manufacturing systems would require a DSL with the manufacturing system se-

mantics, such as, parts, operator or machine, inspection process etc. We have used this approach in the

past to implement a DSL for a relatively large electronic assembly system (Batarseh and McGinnis 2012)

as a profile in SysML. This approach has offered significant savings when used in practice, nevertheless,

it has some shortcomings; in particular, if the application domain is extended by adding additional seman-

tics to the DSL, the transformation script must be revised, which can be a significant task. The proposed

approach overcomes this shortcoming as will be explained.

2.2 Model Transformation

Transformation technologies enable the reuse of knowledge captured in the DSL to generate analysis

models. Czarnecki and Helsen (2006) presented a metamodel-based transformation framework, as in Fig.

1. This framework is the most often used for model transformations to support MDA (OMG, MDA Guide

Version 1.0.1, 2003).

MOFM3 (Meta-metamodel)

Metamodel B
(Ex.: discrete-event simulation

models, i.e., Arena, AnyLogic,

etc. or Optimization models,

i.e., Cplex, GAMS)

Metamodel A
(Ex.: Application domain

semantics in SysML, i.e.,

manufacturing, healthcare

systems, etc.)

Target User Analysis

Model
Transformation

Mapping RulesM2 (Metamodel)

M1 (Model)

Conform to

Conform to

Conform to

Execute

Source User Model

Highest

Abstraction

Lowest

Abstraction

Fig. 1. Metamodel-based Transformation Framework

This framework employs a model:meta-model concept: every model conforms to a meta-model, ex-

cept for MOF, which conforms to itself (http://www.omg.org/mof/). There is a single meta-meta-model

(or meta-meta language), which is MOF, and every meta-model conforms to this meta-meta-model. The

conforming meta-models, M2 in Fig. 1 may define, for example a domain specific language, such as

manufacturing semantics on the source side using SysML language, or an analysis language, such as Are-

na, on the target side.

The mapping rules between the source and target meta-models enable the translation of the source us-

er model into the target user analysis model, and are implemented as a mapping model, or script. Devel-

oping the script requires a deep understanding of both the domain and analysis meta-models. The benefits

of this approach are numerous, such as portability, gain in productivity, and interoperability (Kleppe, et al

2003). Model transformation tools have demonstrated the feasibility and applicability of the approach.

Examples of the model transformation tools are: ATLAS (ATLAS Group 2007), MTF (IBM 2009) and

Semaphore (SINTEF 2006) implemented using the Eclipse platform (http://www.eclipse.org). Each of the

transformation tools has its strengths and weaknesses in application (Ben Salem, et al 2008). This paper

uses ATLAS for transformation purposes.

http://www.omg.org/mof/
http://www.eclipse.org/

Batarseh and McGinnis

3 METHODOLOGY: PROFILE FOR TOOL AND MODEL LIBRARIES FOR PROBLEM

DOMAIN

As mentioned earlier, SysML offers two ways to create DSLs, i.e., profiles and libraries. Our approach

uses the two means to create DSLs. The profiling mechanism is exploited to create a specific analysis tool

profile which is , in effect, an Arena DSL referred to as SysML4Arena. Using this profile, model libraries

are employed to build the application domain semantic which is the manufacturing domain in this paper.

However, this proposed approach can be adapted for any analysis tool and application domain.

 It is crucial to distinguish the different kinds of expertise required to support simulation modeling: (i)

domain expertise, (ii) modeling expertise, and (iii) analysis expertise. The domain experts are the process

owners who use domain semantics to describe their systems. Modeling expertise translates the system de-

scription using domain semantics into a form usable by the analysis experts, often using modeling tools

that are diagrammatic. The analysis expertise is required for building and using the analysis models. Each

of these experts contribute for a specific task in the proposed approach. Fig. 2 shows an activity diagram

in SysML to explain the roles of the experts involved.

Fig. 2. Activities involved for implementing the proposed framework in SysML to support the auto-

translation of SysML models into simulation models

 The domain experts in a manufacturing domain would provide related semantics such as parts, ma-

chines, operators, processes, etc. The modeling experts translate these semantics into diagrams as Bill of

Materials and process plans to visually conceptualize the system requirements and specifications. These

diagrams are the main means of communication between the system modelers and the simulation ana-

lysts. The proposed approach captures the domain semantics in a model library using Blocks. The library

blocks use SysML4Arena profile to model their necessary activities such the process plan of a manufac-

Batarseh and McGinnis

turing part. The following section explains SysML4Arena which also illustrates its usage to model spe-

cifically activities.

The result of this proposed approach is to provide the modeling and analysis experts one formal plat-

form in SysML to communicate the domain semantics provided by the domain experts. Using SysML for

this purpose replaces all the various ad-hoc methods to establish the communication between the stake-

holders. In addition, the final result is domain model libraries that the end user will use to build formal

SysML models based on the DSL. The model library blocks uses the analysis tool profile stereotypes to

model the details of the semantic it represents; the resulting model will be auto-translated into the analysis

tool. Finally, this approach can be applied to any domain application such as healthcare, warehousing,

computer networks, etc. that uses Arena for DES analysis.

4 THE SYSML PROFILE FOR THE ANALYSIS TOOL, SYSML4ARENA

A SysML profile is a set of stereotypes that define how the SysML meta-classes are extended to define the se-

mantics and syntax of the modeled domain. Our proposed approach employs the profiling mechanism to develop the

analysis tool constructs using stereotypes. The resulting SysML profile for the analysis tool is a high-level language

that can be used to develop model libraries representing the application domain semantics. Herein, we discuss the

developed profile for Arena, SysML4Arena, which is implemented by the efforts of the modeling and the analysis

experts. The analysis experts provide the analysis tool semantics and the modeling experts decide on which meta-

classes to extend for the stereotypes.

Arena is a process-oriented modeling tool for discrete-event systems. In other words, the modeling in Arena en-

vironment is structured as a workflow of stepwise activities and actions. Therefore, the activity diagram in SysML is

the appropriate way to develop the Arena stereotypes, using activity diagram components’ meta-classes. Fig. 3a de-

picts a simple model in Arena in which an “Entity” gets created from the “Create” module in Arena, it gets delayed

for processing using the “Process” module that seizes a machine modeled as a “Resource”. Fig. 3b depicts a SysML

activity diagram that models the same system to highlight the compatibility of Arena models with the activity dia-

grams in SysML. Besides the process flows that are modeled in Arena, there are other modules that model the ob-

jects of the system such as “Entity”, “Resource”, etc. The objects are best modeled in SysML as Blocks.

Fig. 3a: Simple model in Arena

Fig. 3b: Modeling Arena Simple Model in SysML using an Activity diagram

The SysML4Arena profile consists of stereotypes that capture the Arena tool constructs, as shown in Fig. 4. The

meta-classes that are used to extend SysML4Arena stereotypes are mainly:

1. Actions: to extend any process in Arena, such as, Create, Process, Delay, Dispose, Transfer, etc.

2. Object Flows: to extend the Connections between the processes in Arena.

the System
Entity Arrives to

Entity
Process an

System
Entity Leaves the

0
 0

0

Batarseh and McGinnis

3. Blocks: to extend the object modeled in Arena, such as, Entity, Resource, Schedule, etc.

Fig. 4. SysML4Arena Profile in SysML that implements the Basic Process Template as stereotypes

This profile is used to construct the application domain model libraries. The following section discusses in de-

tails the development of domain model libraries using analysis tool profile, i.e., SysML4Arena.

5 DOMAIN MODEL LIBRARIES IN SYSML

As mentioned earlier, the analysis tool profile is used to build model libraries. The analysis experts are primarily re-

sponsible for creating these model libraries. The Arena simulation environment is modeled in the SysML tool to

simplify the analysts’ use of SysML4Arena to create the domain specific modules using Arena semantics. Fig. 5

shows customized SysML4Arena menus in SysML to ensure that the Arena simulation experts do not find difficulty

in building the domain model libraries. This implementation is in MagicDraw’s SysML editor.

Fig. 5. Customized menus for SysML4Arena in MagicDraw

Batarseh and McGinnis

The simulation analysts would not need a deep knowledge of SysML semantics in order to build

model libraries. Model libraries are built using Blocks to allow adding properties, such as, value property,

part property, etc. The value properties are defined for the end users to characterize the data instances of

the model. Two examples from manufacturing are presented to illustrate the implementation of model li-

braries in SysML using SysML4Arena.

Example 1: One of the domain semantics of the manufacturing system is Operator. An operator is

one resource that is needed for a process to perform a specific task in a part’s process plan. The simula-

tion analyst translates the operator semantic as a Resource in the simulation model. In other words, the

operator in the domain semantics is matched to a resource in the Arena semantics. Fig. 4 shows that the

stereotype Resource is extended from a Block. In addition, this block has many attributes that are added

to reflect parameter values for Resource in Arena. For example, some of these attributes include Capacity,

Failures, Schedule, etc.

The simulation analyst creates a Block named Operator in the model library to implement the domain

semantics and stereotypes it as a <<Resource>>. This implementation allows the end user to use domain

semantics in SysML, i.e. Operator, and ensures the mapping with the analysis tool semantics by stereo-

typing it, i.e., Resource, for translation purposes. The required inputs from the end user are added as

properties to the library block, i.e. Capacity of the Operator. Fig. 6 shows a containment tree in a SysML

project implemented in MagicDraw to illustrate creating domain model libraries using this approach.

Fig. 6. An Operator: Example in Manufacturing Model Libraries

The end user that builds SysML models for simulation purposes uses domain semantics from this

model library to build the SysML model, as Fig. 7 illustrates. An example is shown for two Operators: (i)

Assembly Machine Operator with a capacity equal to 1, and (ii) Thermal Testing Operator with a capacity

equal to 3. Using this approach the end user is required to understand neither SysML semantics nor Arena

semantics.

Fig. 7. Two instances of the Operator Semantic Modeled by the End User of Domain Library

Example 2: One of the domain semantics of the manufacturing system is manufacturing process.

Some examples of these processes are Build, Assembly, Inspection, Rework, Troubleshoot, Testing, etc.

Here, we give an example of an Assembly process in manufacturing. Assume that an Assembly process in

Batarseh and McGinnis

a manufacturing system is essentially a process that is executed on a batch of parts. A simulation analyst

using Arena to translate this logic uses two Arena modules to model an Assembly process, which are:
1. Batch: This module allows the user to input a desired Batch Size for the process.

2. Process: This module essentially does the processing on the batch by delaying the batch according to the

input processing time and seizing a resource for processing.

 Our proposed approach let the simulation analyst to build this logic in SysML using Arena semantics,

i.e., stereotypes in Fig. 4 customized as in Fig. 5. The implementation of this Assembly Process is ex-

plained as follows. The simulation analyst’s objective is to implement the logic for the modeled process

and provide the end user with the domain semantics for modeling. The model library elements are mainly

Blocks, and a Block can own a specific Activity diagram that models a process. Therefore, the simulation

analyst will create a Block and rename it from the domain semantics, i.e., Assembly, and add an activity

diagram to model the process logic using Arena semantics, as shown in Fig. 8.

Fig. 8. An Assembly Process: Example in Manufacturing Model Libraries

The simulation analyst will add properties to the Assembly Block to allow the end user to input re-

quired data. Examples of these inputs for the assembly process are: batch size, processing time after

batching, and resources. Fig. 9 exemplifies these properties on the Assembly Block.

Fig. 9. Assembly Process Properties

Batarseh and McGinnis

The end user will use the Assembly semantics from the library to model a part or product’s assembly

process. The process plan itself is identified as a Block, and the details of the process are defined using

the internal block diagram (IBD). Fig. 10 depicts a process plan as an IBD, where a sub-component is re-

ceived then there is an assembly process to produce a final product. The value properties defined for the

assembly block are stored as slots of the instance. Fig. 10 also highlights the slots of the assembly pro-

cess. Again, the objective is to highlight how the end user will be dealing only with the application se-

mantics to build user models.

Fig. 10. Building Process Plan for a Part as an IBD and instantiating required input fields

6 MODEL TRANSFORMATION

Model transformation executes mapping rules to automatically translate a model from one software envi-

ronment to another. The objectives of the models might be different. In this paper, a SysML model based

on DSL for system modeling is translated into a simulation model for analysis. The ATLAS transfor-

mation language is used for the mapping rules and Eclipse (JAVA Editor) is the platform used to execute

the transformation.

The SysML user model to be translated is constructed using instances of model library blocks that

represent the DSL semantics. These blocks are stereotyped with the Arena semantics as explained above

and are referred to as “Classifiers” of the instances. The mapping rules are written at the level of the user

model components, i.e., the instances used from the model libraries. The mapping rules match these in-

stance specifications with Arena semantics according to the applied stereotype of its classifier. For in-

stance, AssemblyMachineOperator is an instance of the Operator which is considered its classifier.

In order to execute the transformation the transformation engine requires several input files. In this

configuration, one of the inputs to the transformation engine is the SysML model’s exported XMI files

representing the SysML meta-model, the SysML4Arena profile, the DSL model library, and the user

model. The relationships between these inputs are also realized within these files. The target meta-model

is also an input to the transformation engine. This ensures that the output XMI file from the transfor-

mation conforms to the target meta-model. The framework of the transformation is captured in Fig. 11.

Model

Transformation

Script that contains

mapping rules that

match instance

specifications to

Arena modules

according to the

applied stereotypes

from SysML4Arena

profile on their

classifiers

SysML model

XMI files

represent:

Meta-classes

Applied Stereotypes

Classifiers

SysML Meta-

model

SysML4Arena

Profile

DSL Model

Libraries

User ModelInstance Specifications

Arena Meta-

model

Translated XMI file

for the analysis tool

Conforms

Fig. 11. Model Transformation Framework: Inputs and Output

Batarseh and McGinnis

An example of a mapping rule in a transformation script that matches an instance specification of the

Operator with an applied stereotype <<Resource>> is shown in Fig. 12. Fig. 6 shows the part of the mod-

el libraries where the Operator is modeled as a Block and stereotyped as <<Resource>>. The translator

searches for all Block instances that are stereotyped as a <<Resource>> from SysML4Arena profile and

translates them into a Resource module in the generated XML file.

There are 4 highlighted sections in the mapping rule shown in Fig. 12:

(1) In the beginning of the rule, the source model element that will be matched is specified. The

“from” is the keyword that states the source model element. In this implementation, the mod-

el element is an instance specification identified as “uml!InstanceSpecification”.

(2) The second section places conditions on this instance specification. This rule is to match the

instance specification whose classifier is stereotyped by a <<Resource>> from the

SysML4Arena profile. The if-statement above executes this logic to match only the instance

specification with this condition.

(3) Here, the types of the generated target model elements are specified from Arena meta-model.

The target module is specified as Arena!"BasicProcess_x007C_Resource". In result, this rule

generates a resource model in Arena for every instance specification selected in (1) with the

condition met in (2).

(4) The rule states the way these target model elements must be initialized from the matched

source elements. The Capacity of the resource is the only value property the end user speci-

fied. The other fields were not required from the end user and kept their default value from

Arena. In addition, the value initialized by the end user to specify the capacity of the instance

specification is entered as a slot value to this instance. The logic associated with the capacity

searches for the slot with the defining feature capacity and returns the value specified by the

end user.

rule umltoResource {

from

dt: uml!InstanceSpecification ………………….. (1)

(

dt.classifier->iterate(e; result: Boolean = false |

if (not e. getAppliedStereotype('SysML4Arena::Resource'). oclIsUndefined())

then true

else false

endif) ……………………..(2)

)

to

out: Arena!"BasicProcess_x007C_Resource" ………………………………..(3)

(

SerialNumber <- dt. name. hashCode(). toString(),

ModelLevelID <- '1',

X <- '0',

Y <- '0',

Name <- dt. name,

UserDescription <- '',

ReportStatistics <- 'Yes',

Usage <- '0.0',

Busy <- '0.0',

Type <- 'Capacity',

Idle <- '0.0',

ScheduleRule <- 'Wait',

Schedule <- '',

Capacity <-dt.slot->iterate(e; result: String = '' |

if (e.definingFeature.name='capacity')

then e.value.at(1).value.toString()

else ''

endif), ………………………….(4)

StateSetN <- '',

InitState <- '',

FDM_x0020_Name <- '',

FDM_x0020_Id <- '0',

Arena_x0020_Imported_x0020_Name <- '',

Base_x0020_Efficiency <- '1.0',

Efficiency_x0020_Schedule <- ''

)

}

Fig. 12. Mapping Rule Translates Instances of Operator to Resources in Arena

Batarseh and McGinnis

In this framework, the transformation rules are not connected to the domain semantics, i.e., Operator

but to the <<Resource>> stereotype from SysML4Arena. This transformation is free from the DSL se-

mantics which makes it feasible to have one transformation for any application domain that uses

SysML4Arena profile to build its model library as illustrated in Fig. 13.

Fig. 13. Transformation from SysML to Arena

The proposed framework essentially transforms SysML models into simulation models in Arena. The

SysML models are built using domain semantics that are tagged with Arena stereotypes collected in

SysML4Arena profile. The transformation is enabled for any application domain that uses SysML4Arena.

The transformation is performed in Eclipse environment: (i) ATL script translates SysML model into un-

formatted XML file, and (ii) Java script fixes this file into a formatted XML file. An Arena legacy is ex-

porting only Access database files; this implies using Microsoft Access as an intermediary between the

translated XML file and Arena.

7 SUMMARY AND FUTURE WORK

In this paper, we have demonstrated an MDA approach to model systems using domain-specific language

in SysML. The domain semantics are components of the model library that use SysML4Arena profile to

implement the required logic for building the analysis models in Arena for discrete-event simulation. The

proposed approach automatically translates the SysML models into Arena models using ATLAS model

transformation technology. The mapping rules of the transformation script are not restricted to the appli-

cation domain semantics but to the analysis tool profile, SysML4Arena. The advantages of this approach

are: system’s specification formally modeled via SysML based DSL instead of ad-hoc methods; improved

involvement of all the stakeholders in both the modeling efforts and in model verification and validation;

automatic translation from domain model to analysis model eliminates the time and error of the manual

analysis model coding.

The current capability of the proposed approach is limited to translating the SysML models into one

DES software tool, Arena. In addition, it has been implemented for one application domain elicited from

manufacturing systems. Some future work for this approach is to model two systems from different appli-

cations domains in SysML and use the same transformation script to obtain the DES models in Arena.

Furthermore, it is interesting to explore the possibilities of translating the model library domain semantics

into multiple analysis tools in DES and other analysis approaches such as optimization. MDA promises

new approaches to model systems and execute the appropriate analysis.

Batarseh and McGinnis

REFERENCES

ATLAS group LINA & INRIA (2007). Atlas Transformation Language, User Guide. Downloaded from:

http://www.eclipse.org/gmt/atl/doc/

Ben Salem R Grangel R Bourey JP (2008). A comparison of model transformation tools: Application for

Transforming GRAI Extended Actigrams into UML Activity Diagrams, Computers in Industry,

59(7):682-693.

Batarseh O and McGinnis L (2012). SysML to Discrete-event Simulation to Analyze Electronic Assem-

bly Systems. Accepted to appear at the 2nd International Workshop on Model-driven Approached for

Simulation Engineering; Orlando, Fl.

Czarnecki K and Helsen S (2006). Feature-based survey of model transformation approaches. IBM Syst J

45(3): 621–645.

Gedo C (2012). DISA’ s DoDAF V2 with Model Based Systems Engineering and Systems Modeling

Language (MBSE)/Systems Modeling Language (SysML). Downloaded from:

http://dodcio.defense.gov/sites/dodaf20/products/1320-

1340_DISA_DoDAF_MBSE_SysML_Gedo_01-05-2012_V1.pptx

IBM (2009). IBM Model Transformation Framework 1.0.2 Programmer’s Guide. Downloaded from:

http://www.alphaworks.ibm.com/tech/mtf

Kleppe A Warmer J Bast W (2003) MDA Explained, The Model Driven Architecture: Practice and Prom-

ise, Addison-Wesley.

McGinnis, L. F., and Ustun, V., 2009, “A simple example of SysML-driven simulation,” in Proceedings

of the 2009 Winter Simulation Conference, Austin, TE, USA, pp. 1703–1710

Selic B (2007) A systematic approach to domain-specific language design using UML. In 10th IEEE In-

ternational Symposium on Object and Component-Oriented Real-Time Distributed Computing

(ISORC’07), P2–P9.

SINTEF (2006). Semaphore Guide. Downloaded from: http://www.modelbased.net/semaphore

Weyprecht, P., and Rose, O., 2011, “Model-driven Development of Simulation Solution based on SysML

starting with the Simulation Core.” In Proceedings of the Spring Simulation Conference

OLA BATARSEH is a Post-doctoral Research Fellow in the School of Industrial and Systems Engineer-

ing at the Georgia Institute of Technology. She received his MS and PhD from the University of Central

Florida in 2008 and 2010, respectively. She holds a B.Sc. in Industrial Engineering from the University of

Jordan. Batarseh research focuses on reliable discrete-event simulation to support decision making. Her

major research interests are in the areas of systems engineering, discrete-event simulation, model trans-

formations, total input uncertainties, and imprecise probabilities.

LEON MCGINNIS is Professor Emeritus in the Steward School of Industrial and Systems Engineering

at the Georgia Institute of Technology, where he continues to serve in leadership roles in the Manufactur-

ing Research Center, the Model Based Systems Engineering Center, the Keck Virtual Factory Lab, and

the Tennenbaum Institute for Enterprise Transformation. His area of interest is discrete event logistics

systems, and his focus is on engineering methods for describing, analyzing, designing, and optimizing

them. His email address is leon.mcginnis@gatech.edu.

mailto:leon.mcginnis@gatech.edu

