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Overview

* Purpose?
* Challenges: why do we exist?
» Collaboration Paradigm

» Making Models and MBSE Ubiquitous In
Production and Logistics



Challenge Team Purpose

Increase the availability of reference models, awareness
of these models and methods, and successful use of
MBSE In the production, loqgistics, and industrial
engineering communities.

Specific challenges in providing a foundation to production and logistics
[systems] engineering are the lack of:

— Standard reference models

— Well-structured engineering design methodologies

— Integrated analysis models and tools available to support design and
operational decision-making.
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What makes this possible?

Almost 50 years of effort to “standardize” the specification of

the product—culminating in the ability to exchange designs
between CAD systems

Similar efforts to integrate product analyses with CAD
models

Emergence of SysML, a systems modeling variant of UML
Recognition of the potential payoff

Resulting commitment of resources to accomplish
integration



Motivation

There are multiple stakeholders, with

Why don’t we . . :
discipline-specific viewpoints

apply MBSE
methods and
principles to
Production?

The systems are large, complicated,
expensive, and persistent

The contemporary decision support analyses
are independent, stand alone efforts

The consequences of poorly integrated
decisions can be late to market and/or cost to
produce



Stakeholders and interactions in Production

" Estimate Costs |

g3 Uommmmms | (G e = Points of view and

s responsibilities

: * Product requirements
1 1—3 * Product design
——— » Production system

3: | e lalj‘? resources

= * Process instructions to
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 Process time estimates
§ F * Performance prediction
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Developing the production
system requires sharing a lot of
technical information about the
product, the intended production
processes, the resources that will
execute those processes, the
Instructions for executing those
processes, the intended
production schedule (or rate or
ramp...), and the resulting cycle
time and WIP levels.

Today, this information and the
way it is shared is still largely ad
hoc.



Conseguences of current practice

Time to market (time to full scale
production) delays while the production
system “bugs” are worked out

Cost targets missed because
— Resource capacity additions
— Cycle time and WIP growth
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Remember IPPD?

Exploratory Investigate new opportunities
Explore technology readiness
Evaluate pre-concept match with

Life Cycle Stages

o ALTERNATIVE
gg‘:‘s'c’” users’ needs DECISION
GATE
Concept Identify stakeholders needs OUTCOMES
N Evaluate alternate concepts
Decision Recommend possible solutions * Proceed to
Gate next stage
Development  Develop detailed planning * Proceed but
Identify and manage risks !:::pen amot"
. . items mus
Decision and business 0|:.1|:Tc::rtun|1.1es be resolved
Gate Perform IV & V activities « Not ready;
repeat the
Decision Inspect and Test stage
Gate .
— . * Terminate
Utilization Operate system to satisfy users' needs the project
Decision . : -
Gate | Support Provide sustained system capability
Retirement Store, archive or dispose of system

http://sebokwiki.org/wiki/System_Life Cycle Process Models: Vee
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Mechanisms for development collaboration

Warehouse
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Ubiquitous System Models: Where to start?

* Product, Process, Resource, & Facility
 How do you control your system?

» What do you want to know about the
system?
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Progress to date

* “Foundations” document: fundamental concepts and
abstractions (-> developers)

* "Playbook”™ document: how to go about creating
discipline- and analysis- agnostic production models
(->modelers)

» "Case studies”: central fill pharmacy; composite parts
manufacturing; semiconductor manufacturing
(->general interest, students)

» All with associated SysML models
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It's (long past) time to bring the power of (model based) systems
engineering to production systems and global supply chains!

What does it take to do that?
Where are we in the journey?

Challenge team:
http://www.omgwiki.org/MBSE/doku.php?id=mbse:prodlog

Monday @ 1:00pm in Pier 10

timothy.sprock@nist.gov
leon.mcginnis@isye.gatech.edu
conrad.bock@nist.gov
gthiers3@gmail.com
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Agenda  Review activities and progress to date;

e Qverview

- feedback an discussion;
« identify opportunities to contribute to
existing efforts or important new

« Value Proposition activities.
« 2018 Work Items Status Update

Theory of DELS Specification
Model-based Industrial and Systems Engineering Playbook

e (Case Studies

Central Fill Pharmacy Models — Leon McGinnis, Georgia Tech
Value Stream Mapping for Production — George Thiers, MBSE Tools

 Roadmap:

Document existing models and make them available
Identify and Document Use Cases, Refine Value Proposition
|dentify Additional Case Studies

|dentify Potential Liaisons
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Production and Logistics Systems Modeling
Charter

* http://www.omgwiki.org/MBSE/doku.php?id=mbse:prodlog

LogIn

QIR (€] mBSE Wik s \

Recent Changes Media Manager Sitemap

WE SET THE STANDARD

Trace: - incose_mbse_iw_2018 - prodiog

mbse:prodlog

Table of Contents

Production and Logistics Systems Modeling Production and Logistis Systems
Modeling Challenge Team
Challenge Team Purpose
Scope
Pu rpose Measure of Success
Plan Overview [/ Description
The production and logistics modeling team is advancing the practice and adoption of formal system modeling Team Members

and model-based systems engineering methodologies in production and logistics systems development and
operations. Specific challenges in providing a foundation to production and logistics [systems] engineering are the lack of:

= Standard reference models
= Well-structured engineering design methodologies
= Integrated analysis models and tools available to support design and operational decision-making.

The purpose of this challenge team is to increase the availability of reference models, awareness of these models and methods, and successful
use of MBSE in the production, logistics, and industrial engineering communities.
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Production and Logistics Systems
Modeling Challenge Team

Increase the availablility of reference models, awareness of
these models and methods, and successful use of MBSE In the
production, logistics, and industrial engineering communities.

Specific challenges in providing a foundation to production and

logistics [systems] engineering are the lack of:
— Standard reference models

— Well-structured engineering design methodologies

— Integrated analysis models and tools available to support design and operational
decision-making.

http://www.omgwiki.org/MBSE/doku.php?id=mbse:prodlog
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Currently Active Contributors

Tim Sprock, NIST: lead on “theory”; contributing
everywhere

Conrad Bock, NIST: technical guru
George Thiers, MBSE Tools, Inc: lead on “playbook”
Leon McGinnis, Georgia Tech: lead on “cases”

Greg Pollari, Eugenio Rios, Collins Aerospace:
contributing case study for playbook, industry
perspective
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Agenda

 Overview
 Value Proposition
« 2018 Work Items Status Update

Theory of DELS Specification
Model-based Industrial and Systems Engineering Playbook

e (Case Studies

Central Fill Pharmacy Models — Leon McGinnis, Georgia Tech
Value Stream Mapping for Production — George Thiers, MBSE Tools

 Roadmap:

Document existing models and make them available
Identify and Document Use Cases, Refine Value Proposition
|dentify Additional Case Studies

|dentify Potential Liaisons
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A Value Proposition for MBSE for Mamufacturing Systems

George Thiers Leon MceGinnis Timothy Sprock
MBSE Tools, Ine. Ceorgia Tech ISyE Conrad Bock
Alpharetta, GA, USA Atlants, QA, USA National Institute of Standards snd Technology
Caithersburg, MD, USA

Greg Pollan Adam Graunke

Eugenio Rios Michael Christian

Rodiwall Collins Boeing Research & Technology
Cedar Rapids, [A, USA Seattle, WA, USA

Muodel-Based Systems Engineering (MBSE) i= defined as “the formalized application of modeling
to support system requirements, design, analys=s, verification, and yalidation activities" throughout
all ife-cycle phases [1]. When applied to product development, MBSE has demonstrated benefits
including shorter time-to-market, increased product quality, and reduced program cost. |2, 3, 4, 5.
A mamnufacturing system can be regarded as just another product and modeled usng conventional
MBSE processes, methods, and tools, but thisis far frem contemporary practice, and is challenging
due to the mherent complexaty of s mamifscturing system.  This paper explores contemporary
practices for design, disgnosis, and improvement of a diserete manufacturing system throughout
its hifecycle, what MBSE s application might look ke, and a value proposition for its inclusion.

1 A Manufacturing System’s Lifecycle

To diseuss contemporary practices for design, disgnosis, and improvement of a manufscturing
system, it is first important to acknowledge that a system, models of it, and associated information
and dats are dynamic, not static. They evolve over time i predictable ways as & manufacturing
system advances through its bfecycle. One definition of a mamufacturing svstem Lifecyele is shown
in figure 1 [6].

Simulation

-

Figure 1: A Manufacturing System Lifecyele.

1

Intended audience: potential
adopters of MBSE for Production and
Logistics, both users and managers

Submitted to MBE Summit
— April 1-4, 2019 at NIST
— Preview.

https://v2.overleaf.com/read/pjjpsvkskgvn
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W

Concept, Early-Stage Design

Late-Stage Design, Build

Commission

Operation & Maintenance

What You Know |Lifecycle

Product

Partial EBOM

quirements?

WIP requirements? Lower & upper
bounds on material handling capacity?
Projected storage buffers? Preliminary
facility layout?

pected resource requirements for move,
store processes?  Storage buffer capaci-
ties? Facility layout?

EBOM, partial MBOM EBOM, MBOM EBOM, MBOM, with engincering
changes
Process Make Make, Measure, Test, partial Move & Make, Measure, Test, Move, Store Make, Measure, Test, Move, Store, Con-
Store trol
Resource Work Unit: Capability Work Unit, partial Work Center: Ca- Work Unit, Work Center, partial Area: Work Unit, Work Center, Area: Capa-
pability, partial Capacity (available Capability, Capacity, partial Perfor- bility, Capacity, Performance
resource-hours per hour/shift/day) mance
Facility | n/a Location, partial Channel Location, Channel Location, Channel, Geometry
Control n/a Admission, partial Sequencing (Prioriti- Admission, Sequencing, Resource As- Admission, Sequencing, Resource As-
zation of orders? Is expediting allowed? signment, partial Scheduling (Make to | signment, Scheduling, Resource State
Are changeovers allowed?), partial Re- engineer, order, or stock? Push or pull?), Changes, Dynamic Process Planning
source Assignment (Job shop or dedi- partial Resource State Changes, partial
cated lines7) Dynamic Process Planning (Is material
handling scheduled or requested? Priori-
tization of requests? Is storage allowed?)
= Describe (Product) Does every part have a part (Product) Same, with a richer set of | (Product) Same, with a richer set | NEED HELP HERE; biggest change
= number? A make/buy decision? A | parts. (Proecess) Same, with a richer | of parts. (Process) Same, with a | is that operational data is available.
% process plan if make? DFMA analyses? set of processes, plus: Gross execution | richer set of processes, plus: Max op- (Product) Quality? (Process) Pro-
o (Process) Does every make process | capacity per process? With standard | erational cost per process? Gross ex- cess alternatives upon contingencies?
= have a make-to specification? A resource | hours estimates, max execution rate | ecution capacity & max rate per lo- Waste? (Resource) Utilization, down-
>? capable of its execution? (Resource) per process? (Resource) Downtime | gistical process? Contingency-triggered time, and changeover data. Material
- Are all requirements concerning capabil- causes per resource? Changeover time | alternatives? (Resource) Downtime | handling data. (Facility) Geometry-
< ity, capacity, and performance allocated | estimates? Material movement require- costs per resource? Changeover costs? related. Channel congestion? Storage
§ to resources? ments per part? Channel requirements | Max material handling rate per channel? overflows? (Control) TH, CT, WIP,
between resources? (Facility) Sizing (Facility) Sizing requirements for per | On-time deliveries, (see SCOR for more
requirements for Work Units & Work | channel? Per storage buffer? Per Area? metrics). Per-job statistics.
Centers? Storage constraints? (Control) TH, CT, WIP, critical path,
emerging bottlenecks?
Predict Lower & upper bounds on expected TH, Refined lower & upper bounds on ex- Expected TH, CT', WIP? Expected crit- Worst-case, expected, and best-case TH,
CT, WIP, with fixed resources? pected TH, CT, WIP, with fixed re- ical path?® Potential bottlenecks? x- CT, WIP, bottlenecks, on-time deliver-
sources? Expected critical path? Poten- pected schedule delays or fractions of | ies, schedule delays or fractions of trav-
tial bottlenecks? travelled work, per process? elled work for alternatives and scenarios?
Prescribe | Lower & upper bounds on required re- Refined lower & wupper bounds on re- Expected resource requirements for | Adaptive redesigns: If a shortage of part
sources, with fixed TH, CT, WIP re- quired resources, with fixed TH, CT, make, measure, test processes? Ex- type P, what should we do? If an outage

of machine instance M, what should we
do? Strategic redesigns, in response to
changing external demand or internal
technologies.
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Model-based and systems engineering for discrete manufacturing systems enable:

« Consistent Description by fixing semantic gaps and inconsistencies among all manufacturing stakeholders. \g.
PLM and PDM have demonstrated the benefits of all stakeholders sharing consistent product and make-proces 4
data \cite{hill2003trendsetter}. It seems a small leap to argue that similar benefits could be realized by all
stakeholders sharing consistent resource, facility, and control data.

. Predictable and Prescribable Performance: Manufacturing performance projections throughout the lifecycle
for metrics including rate and cost, with confidence on par with product performance projections, plus prescribable
ways to improve that performance.

. Data-Driven Decision Making: Evolving from a messy garage or black hole of one-off analytical models to a
single-source-of-truth descriptive model that can be analyzed, interrogated, and the basis of automation. One
application of automation is generation of analytical models to answer roughly 80% of "“routine™ questions, and
while automatically-generated analytical models may never be as performance-optimized as humans' hand-
crafted ones, the cost is almost trivial compared to the benefits gained in validation, verification, and trust.

- Lifecycle Awareness: A manufacturing system, its models, and its use cases are dynamic, not static, and evolve
over time in predictable ways. Lifecycle awareness sets expectations for model content and utility over time.

. Digital Integration of initiatives including "smart manufacturing" and "digital thread" for a discrete manufacturing
system. A data schema is a structural model, not a behavioral nor a control one, so without strong semantic-
adding contributions from a human interpreter you'll never induce how a system actually works. Data doesn't give
you the schema; you can infer one, but the span of that schema will only cover what's in the data - and nothing
that's not. Statistical analysis performs description, and limited prediction under strong assumptions, effectively
that the future will look a lot like the present and past.

30



Discussion: Value Proposition

» How would you apply MBISE?
» \What would you want to do with It?

31



Agenda

 Overview
« Value Proposition
« 2018 Work Items Status Update

Theory of DELS Specification
Model-based Industrial and Systems Engineering Playbook

e (Case Studies

Central Fill Pharmacy Models — Leon McGinnis, Georgia Tech
Value Stream Mapping for Production — George Thiers, MBSE Tools

 Roadmap:

Document existing models and make them available
Identify and Document Use Cases, Refine Value Proposition
|dentify Additional Case Studies

|dentify Potential Liaisons
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Theory of Discrete Event Logistics Systems (DELS) Specification

Timothy Sprock®, George Thiers®, Leon MeGinnis®, Conrad Bock®

"Wational Institute of Standards and Technology,
Gaithersburg, MDD 20809
*MDSE Tools, Inc.
Alpharetta, GA 50009
“H. Milton Stewart School of Industrial and Systems Engineering
Georgia Institwte of Technology, Atlanta, GA 50552

Abstract

abstract
Keywords:  Discrete Event Logistics Systems (DELS); System Modeling; SysML

1 L INTRODUCTION

2 A discrete event logistics system (or DELS) can be described as:

3 e a network of resources, arranged in a facility; each resource has one or more processing
N capabilities and for each capability, it has a capacity;

5 s a set of products flow through this network of resources, and are transformed by pro-
s cesses executed by the resources; a process may require the eapabilities of more than
T one resource; the transformation can change location, age, or condition

. The adjective “discrete” in this case recognizes the nature of the flows and processes.

s Flows are in discrete units, e.g., individual product units or components of product units, or
w hatches of product units. Processes have well-defined start and end events, e g | the start of a
u  machining or heat-treating process, and the completion of same, even though our knowledge
1= of the well-defined event time may be subject to uncertainty.

1 The concepts of DELS extend far bevond factories. A warehouse also is a DELS, albeit

w ome with much simpler resources and processes. Similarly, a supply chain is a DELS, but

Email gddress: timothy .sprock@nist.gov (Timothy Sprock)

Preprint submitted to NISTIR - AMS January 24, 2019

Intended audience: developers of
methods and tools who need to
understand the deep technical
foundations

Document (Preview):

https://v2.overleaf.com/read/hhsmnkssjwcp

SysML Models:

https://github.com/usnistgov/DiscreteEventLogisticsSystems

Email timothy.sprock@nist.gov for access (need github
account)
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Reusable Model Libraries and Methods for
Using Them w

—————————————————— - —_—

* Networks, Top of M1
M1 * Flow Networks, & * DELS Reference model
* PPRF + Task * Process Networks [+ Network Abstractions
* Control " +Tokens » PPRF Domain Ontology
=] ¢ PPRF Taxonomies & Model Libraries
Storage Production Transportation Supply Chain e Control Patterns
Systems S stems S‘stems . S st‘errgs.
T | | | Middle of M1
* Warehouse  * Flow shops, * Material * Healthcare * (sub-) Domain-specific reference
* Fulfillment Open shops, Handling syste@s L models and architectures
systems Job shops Systems " Sustainment * Generalization Set aligns with STORE,
* ASRS * Production » AMHS, System MAKE, & MOVE processes
* Crossdocks lines AGVs, * Reverse / ’
* HVS * Work Cells conveyors Reman
... * Aerospace * Trucking Systems
* Automotive . B
o . PN
. Semicondugtor | Bottorn of M1
BT + System Models
__________________ _______________________ _J+ "as-built” or “specification” models
MO Actual real systems (or simulations of them)
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Theory of Discrete Event Logistics Systems
(DELS) Specification

1. Introduction 5. DELS Operational Control
2. Modeling Framework 5.1 Patterns for Modeling
3. Network Abstractions Operational Control

3.1 Basic Networks 5.2 DELS Controller

3.2 Flow Networks oo
33 Process Networks 6. Extended DELS Definition

4.  Discrete Event Logistics Systems /. Specializing DELS

4.1 Resource : -
49 Process 8. Composing Specialized DELS

4.3 Product
4.4 Facility
4.5 Task

4.6 Interfaces
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Agenda

 Overview
« Value Proposition
« 2018 Work Items Status Update

Theory of DELS Specification
Model-based Industrial and Systems Engineering Playbook

e (Case Studies

Central Fill Pharmacy Models — Leon McGinnis, Georgia Tech
Value Stream Mapping for Production — George Thiers, MBSE Tools

 Roadmap:

Document existing models and make them available
Identify and Document Use Cases, Refine Value Proposition
|dentify Additional Case Studies

|dentify Potential Liaisons
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Model-Based Industrial and Systems Engincering Playbook - . :
> Manulacturing Bdition, Electronics AfinSanpls W Intended audience: production and
logistics systems modelers; a "how

George Thiers'?, Leon McGinnis', Timothy Sprock®, Conrad Bock?, Greg Pollari*, Eugenio to d 0 it” g u Id e

Rios?, and Adam Graunke®
b]

1Georgia Tech ISyB; Atlanta, GA 30332
2MBSE Tools, Inc., Alpharetta, GA 30009
3NIST, Gaithersburg, MD 20899
4Rockwell Collins, Cedar Rapids, TA 52402
’Boeing Research & Technology, Seattle, WA 98108

J ary 24, 2019 . n
Docu?;?(:;; ~\Versi(m: 0.0.2 DOCU m e nt (P reVI eW) .
Tool Version: MagicDraw 18.5 sp3 httpS ./ /v2.overleaf. com/read/rsj qhqzmxtxq

Modeling Language Version: SysML 1.4, UML 2.5

SysML Models (Coming Soon):

https://github.com/usnistgov/DiscreteEventLogisticsSystems
Email timothy.sprock@nist.gov for access (need github
account)
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PRODUCT

* Identity and Composition: Common starting point is an EBOM

* C(lassification: |dentifying abstract part families enables reusable process definitions

* Refinement: Triggers include EBOM refinement, EBOM-> MBOM transition, EBOM & MBOM refinement
 Complement Type with State: Certain dimensions of a part’s state model may be relevant to manufacturing
* Attach Data: What part data is relevant to manufacturing, and how to model it?

* Abstraction: Connect to model libraries using generalization relationships

* Scalability: Product models can be big
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Level DMaterial Description

0.1 868-6 Coupler

.2 868-2 Sensor Card

.2 868-5 CCA 2

3 868-13 Cable Assembly 1

.2 868-7 Daughter Card

.2 868-9 Programmed Assembly

3 868-1 Control Card Assembly - Modified
| 868-3 Control Card

..... 5 868-8 Microcircuit, Modified

.2 868-10 Chassis Electrical Equipment
.3 868-4 CCA 1

L3 868-12 Filter

3 868-14 Cable Assembly 2

.2 868-11 Electronic Assembly

.2 868-15 Cable Assembly 3

.2 868-16 Cable Assembly 4

Table 2.1: EBOM information for a part type named a Coupler
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PRODUCT

* Identity and Composition: Common starting point is an EBOM

* C(lassification: |ldentifying abstract part families enables reusable process definitions

* Refinement: Triggers include EBOM refinement, EBOM-> MBOM transition, EBOM & MBOM refinement
 Complement Type with State: Certain dimensions of a part’s state model may be relevant to manufacturing
e Attach Data: What part data is relevant to manufacturing, and how to model it?

* Abstraction: Connect to model libraries using generalization relationships

* Scalability: Product models can be big



Level Material Description

0.1 868-6 Coupler

.2 868-2 Sensor Card

3 868-2+A02 Sensor Card Wire/Cable Kit
3 868-2+PBA Sensor Card

3 868-2+PR Sensor Card

i 868-2+MP Sensor Card

D 868-2+MPA  Sensor Card

! 868-2+PB Sensor Card

4 868-17+A01  Generated Wire Kit B

o4 868-18+A01  Generated Wire Kit C

.2 868-5 CCA 2

3 868-5+PR CCA 2

! 868-5+ kK01 CCA 2

.4 868-5+MP CCA 2

..... 5 868-5+MPA  CCA 2

I 868-5+PB CCA 2

.2 868-6+PB Coupler

3 868-13 Cable Assembly 1

.2 868-7 Daughter Card

.3 868-7+MP Daughter Card

3 868-7+PB Daughter Card

.2 868-9 Programmed Assembly

3 868-1 Control Card Assembly - Modified
A 868-1+PB Control Card Assembly - Modified
4 868-3 Control Card

D 868-3+MP Control Card

...... 6 868-8 Microcircuit, Modified

S 868-3+PB Control Card

D 868-3+PBB Control Card

.2 868-10 Chassis Electrical Equipment
3 868-10+PR Chassis Electrical Equipment
A4 868-4 CCA1

S 868-4+A01 CCA 1 Generated Wire Kit
D 868-4+MP CCA1

...... 6  868-4+MPA CCA1

....... 868-4+MPB CCA 1

D 868-4+PB CCA1

S 868-4+PBB  CCA 1

! 868-10+E01  Chassis Electrical Equipment
! 868-10+PB Chassis Electrical Equipment
A4 868-10+PBA  Chassis Electrical Equipment
| 86G8-12 Filter

D 868-12+A01  Filter Generated Wire Kit
D 868-12+PB Filter

! 868-14 Cable Assembly 2

.2 868-11 Electronic Assembly

e 868-11+PR Electronic Assembly

| 868-11+E01  Electronic Assembly

| 868-11+PB Electronic Assembly

| 868-11+PBA  Electronic Assembly

! 868-11+SA Electronic Assembly

2 868-15 Cable Assembly 3

L3 868-15+A01  Cable Assembly 3 Generated Wire Kit
.2 868-16 Cable Assembly 4

3 868-16+A01  Generated Wire Kit A

Table 2.2: MBOM information for a part type named a Coupler.
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PRODUCT

* Identity and Composition: Common starting point is an EBOM

* C(lassification: |ldentifying abstract part families enables reusable process definitions

* Refinement: Triggers include EBOM refinement, EBOM-> MBOM transition, EBOM & MBOM refinement
 Complement Type with State: Certain dimensions of a part’s state model may be relevant to manufacturing
e Attach Data: What part data is relevant to manufacturing, and how to model it?

* Abstraction: Connect to model libraries using generalization relationships

* Scalability: Product models can be big
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The primary mechanism to attach data values is the SysML value property. Options include:
- Per-instance data (e.g. Serial Number): Model instantiation is required in order to enter unigue data values.
- Per-type data (e.g. Part Number): No instantiation required, use property’s “default value”.

- Per-usage data (no examples yet): No instantiation required, use usage’s “context-specific initial value”.
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PRODUCT

* Identity and Composition: Common starting point is an EBOM

* C(lassification: |ldentifying abstract part families enables reusable process definitions

* Refinement: Triggers include EBOM refinement, EBOM-> MBOM transition, EBOM & MBOM refinement
 Complement Type with State: Certain dimensions of a part’s state model may be relevant to manufacturing
e Attach Data: What part data is relevant to manufacturing, and how to model it?

* Abstraction: Connect to model libraries using generalization relationships

* Scalability: Product models can be big



PROCESS

Top-Level Process and its I/0: Black-box definition of the top-level manufacturing transformation
* Input/Output: Parts already have type; Work Orders need types too

* Refinement: Add a lower-level process

* Exclusions from the Process Model

* Refinement: To a leaf-level

*  Which Process is being Requested: Make versus Deliver

* Complement Type with State: For processes’ part |/O

e Attach Data: To both processes and work orders

e Abstraction: Connect to model libraries using generalization relationships

* Scalability: Process models can be big, just like Product models
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|Assembly Labor Time: 0 min (0%)
‘Quality Labor Time: 0 min (0%)
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Top-Level Process and its I/0: Black-box definition of the top-level manufacturing transformation
* Input/Output: Parts already have type; Work Orders need types too

* Refinement: Add a lower-level process

* Exclusions from the Process Model

* Refinement: To a leaf-level

*  Which Process is being Requested: Make versus Deliver

* Complement Type with State: For processes’ part |/O

e Attach Data: To both processes and work orders

e Abstraction: Connect to model libraries using generalization relationships

* Scalability: Process models can be big, just like Product models
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Top-Level Process and its I/0: Black-box definition of the top-level manufacturing transformation
* Input/Output: Parts already have type; Work Orders need types too

* Refinement: Add a lower-level process

* Exclusions from the Process Model

* Refinement: To a leaf-level

*  Which Process is being Requested: Make versus Deliver

* Complement Type with State: For processes’ part |/O

e Attach Data: To both processes and work orders

e Abstraction: Connect to model libraries using generalization relationships

* Scalability: Process models can be big, just like Product models
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PROCESS

Top-Level Process and its I/0: Black-box definition of the top-level manufacturing transformation
* Input/Output: Parts already have type; Work Orders need types too

* Refinement: Add a lower-level process

* Exclusions from the Process Model

* Refinement: To a leaf-level

*  Which Process is being Requested: Make versus Deliver

* Complement Type with State: For processes’ part |/O

e Attach Data: To both processes and work orders

e Abstraction: Connect to model libraries using generalization relationships

* Scalability: Process models can be big, just like Product models



Exclusions from the process model so far developed, whether intentional or pending, include:

|/O of passive resources may include more than just parts, for example fixtures too.

- To be precise, 1/0 of parts may need to specify both type and state.
- Controls for the flow of Work Orders (e.g. Operational Control)
- Controls for the flow of Resources (e.g. Material and Resource Handling)

- Contingencies. Process models so far say nothing about faults, exceptions, failures, or things going wrong.
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Top-Level Process and its I/0: Black-box definition of the top-level manufacturing transformation
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\. /T
In SysML, pins have an optional “InState” property.
This enables specification of not just the output type,

but also state — such as a manufacturing specification,
a physical property (temperature), an orientation, etc.
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ACTIVE RESOURCE

* Define: Active Resources.

e Identify: Active resources and their composition.

* Capability: ldentify processes that active resources are capable of executing.
* Capacity: Modeling active resources’ capacity for process execution.

* Performance: Modeling active resources’ performance in process execution.
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An Active Resource’s defining characteristic is an ability to execute processes.
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ACTIVE RESOURCE

* Define: Active Resources.

e Identify: Active resources and their composition.

* Capability: ldentify processes that active resources are capable of executing.
e Capacity: Modeling active resources’ capacity for process execution.

* Performance: Modeling active resources’ performance in process execution.
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ACTIVE RESOURCE

* Define: Active Resources.

* Identify: Active resources and their composition.




OPERATIONAL CONTROL

* Define: PERA /ISA-95 / B2MML “Levels” of Enterprise Control
e G@Getting Started: Define Controllers for Active Resources.
* Define: Level 3 Functions

* Refinement: Model each controller’s level 3 functionality.



OPERATIONAL CONTROL

* Define: PERA /ISA-95 / B2MML “Levels” of Enterprise Control
e G@Getting Started: Define Controllers for Active Resources.
* Define: Level 3 Functions

* Refinement: Model each controller’s level 3 functionality.



Define: PERA /ISA-95 / B2MML “Levels” of Enterprise Control

Lowest Levels of
Equipment Typically
Scheduled by
Levels 3 or 4

ENTERPRISE

l May contain 1 or more

SITE

1 May centain 1 or more

AREA

=
N

lMay contain 1 or more

JMay contain 1 or more

lMay contain 1 or more

PRODUCTION PRODUCTION
PROCESS CELL UNIT LINE
1 Must contain 1 or more l May contain 1 or more
UNIT WORK CELL
_,-/'/
"IN J \ J
Y ¥ N
Lower level Lower level Lower level
equipment used equipment used equipment used
in batch in continuous in repetitive or

operations.

operations.

discrete operations.

Level 4 activities
typically deal with
these objects

Level 3 activities
typically deal with
these objects



Define: PERA /ISA-95 / B2MML “Levels” of Enterprise Control

4 - Establishing the basicplantschedule -
production, material use, delivery, and
shipping. Determininginventory levels.

Level 4 . .
Business Planning

& Logistics
Plant Production Scheduling,

Operational Management, etc Time Frame

Months, weeks, days, shifts

Level 3 3 - Work flow / recipe control, stepping the

processthrough states to producethe
desired end products. Maintainingrecords
and optimizing the production process.

Manufacturing
Operations Management

Dispatching Production, Detailed Productior
Scheduling, Reliability Assurance

Time Frame
Shifts, hours, minutes, seconds

Level 2 2 - Monitoring, supervisory control and

automated control of the production process

Discrete

ontinuous
Control

Batch

Level 1| ool Control /1. Sensingthe production process,

manipulating the production process




OPERATIONAL CONTROL

* Define: PERA /ISA-95 / B2MML “Levels” of Enterprise Control
e G@Getting Started: Define Controllers for Active Resources.
* Define: Level 3 Functions

* Refinement: Model each controller’s level 3 functionality.
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OPERATIONAL CONTROL

* Define: PERA /ISA-95 / B2MML “Levels” of Enterprise Control
e G@Getting Started: Define Controllers for Active Resources.
* Define: Level 3 Functions

* Refinement: Model each controller’s level 3 functionality.



Define: Level 3 Functions

ATOMIC functions: (to “fulfill” a job is to execute its requested process)

* Admission - Which jobs to fulfill?

* Sequencing - When, or in what order, is an admitted job fulfilled?

* Assignment - Which resource is assigned to fulfill a job?

* Dynamic Process Planning - Which process step does job fulfillment require next?

* Changing State - Which state should a resource be in?

COMPOUND functions:
* Scheduling — A combination of sequencing and assignment

* Routing — A combination of assignment and dynamic process planning



OPERATIONAL CONTROL

* Define: PERA /ISA-95 / B2MML “Levels” of Enterprise Control
e G@Getting Started: Define Controllers for Active Resources.
* Define: Level 3 Functions

* Refinement: Model each controller’s level 3 functionality.



1 ) . 1
in joblH : Job jokiM : Job[0. #] { Scheduling L jobOUT : Jok[0.#] out jobOUT : Job
{stream; a E

1etream}

Changeovers H'EjnhDLIT: Jak[0. ]

Each of the call actions is a behavior, not just an algorithm. However, if decision-making logic is all that’s of initial interest,
start there. The called behavior could be opaque, for example to specify a well-known rule such as “FIFO” for sequencing.

The called behavior could be a state machine. The called behavior could be another activity, modeling both an algorithm and
how decisions are actuated.



Agenda

 Overview
« Value Proposition

« 2018 Work Items Status Update
— Theory of DELS Specification
— Model-based Industrial and Systems Engineering Playbook

« Case Studies

— Central Fill Pharmacy Models — Leon McGinnis, Georgia Tech

— Value Stream Mapping for Production — George Thiers, MBSE Tools
 Roadmap:

— Document existing models and make them available

— ldentify and Document Use Cases, Refine Value Proposition

— ldentify Additional Case Studies
— ldentify Potential Liaisons
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Intended audience: general; non-
Model-Based Systems Engineering technical description of CFP; SysML-
for High Volume Central Fill Pharmacies based anaIySIS_ag nOStIC SySte m
model; decision-support analyses
referencing the system model.

Leon F. McGinnis
Professor Emeritus
School of Industrial and Systems Engineering

The Georgiz Institute of Technology

January 24, 2015

Rev 04

Download most recent version from
e e e e http://leonmcginnis.com/dels-case-studies/

Mational Institutes of Science and Technology and by Mckesson High

Walue Solutions. It has benefited from the participation of many
individual researchers, particularly Dr. Tim Sprack, Or. George Thiers, Dr.

Doug Badner, Camille Berpes, Francisoo s, and D Liu.
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high zp=ed dispensing technologies require

act [Activty] AssmOrder [ AssmOrder 1]

considerable integration of all the individual resources
and the puck conveyor, but can be very effective for

fulfils «blocks
StoreTote

«block»
StoreOrder

dispensing drugs for which there is a high demand rate.

in fillTask : FillLineTask filTask, { :FillScript ) _ filedScript
{stream} Multiplicity ="1.* \_______J

A high flexibility resource operates guite differently. I

«blocks

is ezsentially 3 robotic workstation, which may have as Order fuifds J
many as 200 or more canisters, or pill types. Labeled v v

v ) . ! p P date : Integer{: [in by Task | ScounTesk - g ‘
and tare weighted vials may be delivered to the storelD {stream} —
workstation via pucks and the vials removed from the orderD I
pucks by the robot. Alternatively, the workstation may ordeaneIl = InBegTesK: BagorderTask | bagiask - @RS baggedOrder out : BaggedOrder
have its own capability to dispense, label and tare Figure 3 Rabatic Warkstation TR fopeny Multiplcity = 1.\ fean
weigh vials. Figure 3 shows 2 robot holding 2 vial under https:/fwww. youtube.comfwatchFv=cBUig OrderLine = =
2 dispensing canister. For high flexibility workstations values fulfils . 2::,,"":‘::{;‘;:ﬁ:;;’::’;‘bﬁ",‘;“:;:;:;:f;‘gzz‘:fd::': Boh e
with vizl dispenszing capability, the filled vizls are dropped into totes moved on a tote conveyor. There NDC NDCPackage e fic.Prucoss. X st be decomposed nko
can be multiple high-flexibility workstations, as well as manual fill stations integrated via the tote ,:':;S,,D
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Figure 1 Customer Order Assembly Process

Figure 1 CFP "Product"
puckSystem : PuckSystem FilakeAwayLOmeyor
«block»
: HSFillSystem VialDispense System
T
: PuckConveyorSystem l
i urget [ [ — «block»
R N F A Wempuckiee | etkeowspa® ;‘0- ) { it Vaiapenactvent | 1" |VialDispenseWs
- —had > = Mtk )
VTS:VTS 4 ‘ T ‘ : puckRegister | «block»
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‘ : HFFill System by ] ; ; ialStore
[} ! I | [}
! | | | «block»
L - e labeller |
I 4 A gl I NI M o -
sortSystem : SortSystem _— rs Puoosser) | A__womsec) N aaeewe) (VaOspenaetrs) Twescae:) VaDapeosenss:) | e |
tareScale |  «blocks»
<caBatien |
storeToteBuffer : StoreToteBuffer H sortationConveyor : SortationConveyor | gy | TareScale
I «block»
1 sealedToteStore : SealedToteStore | 1 VialDispenseController
, I Figure 2 Behavior of the Vial Dispense System Controller and Vial Dispense Workstation Figure 1 Vial Dispense System Structure
Figure 1 Hypothetical HVCFP
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Additional Case Studies

» Semiconductor manufacturing (Intel Mini-
Fab case)

» Composite wing production (open source)
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* Insert Slides from MBSE Tools
— Possibly related to SBIR Phase | report?
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 Overview
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« Roadmap:

— Document existing models and make them available

— ldentify and Document Use Cases, Refine Value Proposition

— ldentify Additional Case Studies
— ldentify Potential Liaisons
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MBISE — Shop Floor Operations Use Case

Contror”
Design

« System: Small flexible job shop or flow shop; 2-5ish kinds of machines; robots, AGVs, or

conveyors for MH; storage solution

 Describe: Conceptual Model (PPRF) vs Engineering Model (interfaces & protocols)

o How do we build models? use the model libraries? When is the model done/complete?
 Describe: As-is control — MES, flow rules, assignment rules, SCADA/PLC (if necessary)

o (re-)Design: If | want to make the system flow better, where/how do | make changes?
 Describe: Sensors & Data Acquisition — what data do/can we collect from the shop floor?

o Design: Where to add sensors? (I0T)
« Predict: Shop floor simulation generation — progress on closing “fidelity gap”

— (re-)Design: If | want to make the system flow better, what will the impact be of any changes | make?

« Control: Scheduling — what information is available
— Information: heterogeneous sources, inconsistent formats, fidelity, aggregation
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Roadmap - ldentify a Case Study

* Include all SysML diagrams and syntax

» Domain-specific concepts:
— Product, Process, Resource, & Facility
— How do you control your system?
— What do you want to know about the system?
— System Architecture
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Discussion: Value Proposition

» How would you apply MBISE?
» \What would you want to do with It?
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v

Concept, Early-Stage Design

Late-Stage Design, Build

Commission

Operation & Maintenance

quirements?

WIP requirements? Lower & upper
bounds on material handling capacity?
Projected storage buffers? Preliminary
facility layout?

pected resource requirements for move,
store processes?. Storage buffer capaci-
ties? Facility layout?

2
[
=
o
2
o=
—
= Product Partial EBOM EBOM, partial MBOM EBOM, MBOM EBOM, MBOM, with engineering
8 changes
e Process Make Make, Measure, Test, partial Move & Make, Measure, Test, Move, Store Make, Measure, Test, Move, Store, Con-
= Store trol
=]
> Resource ‘Work Unit: Capability Work Unit, partial Work Center: Ca- Work Unit, Work Center, partial Area: Work Unit, Work Center, Area: Capa-
= pability, partial Capacity (available Capability, Capacity, partial Perfor- bility, Capacity, Performance
— resource-hours per hour/shift/day) mance
- Facility | n/a Location, partial Channel Location, Channel Location, Channel, Geometry
Control n/a Admission, partial Sequencing (Prioriti- Admission, Sequencing, Resource As- Admission, Sequencing, Resource As-
zation of orders? Is expediting allowed? signment, partial Scheduling (Make to | signment, Scheduling, Resource State
Are changeovers allowed?), partial Re- engineer, order, or stock? Push or pull?), Changes, Dynamic Process Planning
source Assignment (Job shop or dedi- partial Resource State Changes, partial
cated lines?) Dynamic Process Planning (Is material
handling scheduled or requested? Priori-
tization of requests? Is storage allowed?)
Q Deseribe (Product) Does every part have a part (Product) Same, with a richer set of | (Product) Same, with a richer set | NEED HELP HERE: biggest change
A number? A make/buy decision? A | parts. (Proecess) Same, with a richer | of parts. (Process) Same, with a | is that operational data is available.
% process plan if make? DFMA analyses? set of processes, plus: Gross execution | richer set of processes, plus: Max op- (Product) Quality? (Process) Pro-
o (Process) Does every make process | capacity per process? With standard | erational cost per process? Gross ex- cess alternatives upon contingencies?
= have a make-to specification? A resource | hours estimates, max execution rate | ecution capacity & max rate per lo- Waste? (Resource) Utilization, down-
>C_.} capable of its exccution? (Resource) per process? (Resource) Downtime | gistical process? Contingency-triggered time, and changeover data. Material
- Are all requirements concerning capabil- causes per resource? Changeover time | alternatives? (Resource) Downtime | handling data. (Facility) Geometry-
< ity, capacity, and performance allocated | estimates? Material movement require- costs per resource? Changeover costs? related. Channel congestion? Storage
§ to resources? ments per part? Channel requirements | Max material handling rate per channel? overflows? (Control) TH, CT, WIP,
between resources?  (Facility) Sizing (Facility) Sizing requirements for per | On-time deliveries, (see SCOR for more
requirements for Work Units & Work | channel? Per storage buffer? Per Area? metrics). Per-job statistics.
Centers? Storage constraints? (Control) TH, CT, WIP, critical path,
emerging bottlenecks?
Predict Lower & upper bounds on expected TH, Refined lower & upper bounds on ex- Expected TH, CT, WIP? Expected crit- Worst-case, expected, and best-case TH,
CT, WIP, with fixed resources? pected TH, CT, WIP, with fixed re- ical path?® Potential bottlenecks? Ex- CT, WIP, bottlenecks, on-time deliver-
sources? Expected critical path? Poten- pected schedule delays or fractions of | ies, schedule delays or fractions of trav-
tial bottlenecks? travelled work, per process? elled work for alternatives and scenarios?
Prescribe | Lower & upper bounds on required re- Refined lower & upper bounds on re- Expected resource requirements for | Adaptive redesigns: If a shortage of part
sources, with fixed TH, CT, WIP re- quired resources, with fixed TH, C'T, make, measure, test processes? Ex- type P, what should we do? If an outage

of machine instance M, what should we
do? Strategic redesigns, in response to
changing external demand or internal
technologies.
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Agenda

 Overview
« Value Proposition

« 2018 Work Items Status Update
— Theory of DELS Specification
— Model-based Industrial and Systems Engineering Playbook

e Case Studies

— Central Fill Pharmacy Models — Leon McGinnis, Georgia Tech
— Value Stream Mapping for Production — George Thiers, MBSE Tools

« Roadmap:
— Document existing models and make them available
— ldentify and Document Use Cases, Refine Value Proposition
— ldentify Additional Case Studies
— ldentify Potential Liaisons

103



Roadmap - ldentify a Case Study

« “... advancing the practice and adoption of formal system modeling
and model-based systems engineering methodologies in production
and logistics systems development and operations.”

« “Do you have any examples to get me started?”

« Sandy Friedenthal & Chris Oster — “Architecting Spacecraft with
SysML: A Model-based Systems Engineering Approach”

— http://sysml-models.com/spacecraft/index.html

104



Roadmap - ldentify a Case Study

* Include all SysML diagrams and syntax

» Domain-specific concepts:
— Product, Process, Resource, & Facility
— How do you control your system?
— What do you want to know about the system?
— System Architecture
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Roadmap - Liaisons

« ManTIS

o |ISE

* Winter Simulation Conference
 SDOs (OMG, others?)

e Others?
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Challenge team
weekly meeting
at 11 am (EST)
Fridays.

For February,
2018, the
meeting
Information Is:

To join the Meeting:
https://bluejeans.com/406291803

To join via Room System:

Video Conferencing System: bjn.vc -or-
199.48.152.152

Meeting ID : 406291803

To join via phone :

1) Dial:
+1.408.740.7256 (US (San Jose))
+1.888.240.2560 (US Toll Free)
+1.408.317.9253 (US (Primary, San Jose))
(see all numbers -

http://bluejeans.com/numbers)

2) Enter Conference ID : 406291803
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Contact Us:
timothy.sprock@nist.gov
leon.mcginnis@isye.gatech.edu
conrad.bock@nist.gov

Links:
http://www.omgwiki.org/MBSE/doku.php?id=mbse:prodiog
https://github.com/usnistgov/DiscreteEventLogisticsSystems
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2019

Annual INCOSE

international workshop

Torrance, CA, USA
January 26 - 29, 2019

www.incose.org/IW2019
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