
What Is a Reference Model
and What Is It Good For?

Leon F. McGinnis, Professor Emeritus
Tim Sprock, Post-Doctoral Fellow

George Thiers, Post-Doctoral Fellow
Dagstuhl 16062

10Feb2016

CONTEXT: 1

2

SC0

R
ea

lit
y

M
od

el
An

al
ys

is

MSC0

D
ec

is
io

n

Cold
Rhomboid

Fits in hand

Weight
Dimension

Count
Possible because
we share a
language for
communicating
about ice cubes
and share
experience of ice
cubes

CONTEXT: 2

3

Hans’ overview—here’s how we think about
our supply chain

Most presentations so far—here’s an analysis
we can do

Where I want to focus—how do we create
models and how do we exploit them

CONTEXT

4

SC0 SCt SCT

R
ea

lit
y

M
od

el
An

al
ys

is

MSC0 MSCt MSCT

D
ec

is
io

n

OBSERVATIONS

• When we discuss the “reality”, we are using
models, so we can really only discuss models

• The model is not the reality (“all models are wrong …”)

• Reality changes, so the model must change
• The model does not have to be (should not

be!) the same as the analysis
• Analysis is in service to decision making
• We want this to be “routine” (we know how to formulate

and execute the analyses!)

5

PRINCIPLES

• MSC must unambiguously describe structure,
behavior and control

• We must be able to detect changes in SC and reflect
them in MSC (impact of accurate, r/t data …)

• MSC should be the reference model for all decision
support analyses

• We should be able to generate any routine analysis
instantly and at zero (variable) cost and translate
result into executable decisions

• Analysis results must be presented in the context of
executable decisions

6

SO HOW SHOULD WE CREATE
THESE “REFERENCE MODELS”?

7

TWO FUNDAMENTAL QUESTIONS

• What tools should we (can we) use?
• How should we use these tools?

8

We spent years searching for a perfect discrete event logistic system model:

KEY ENABLER: SYSML

OMG SysML™: Systems Modeling Language

FOR EXAMPLE

Warehouse functions (functional design)
Warehouse resources (embodiment design)
Warehouse systems (embodiment design)

Resource capabilities (operations)
Activities (transport or order picking)
Interactions (among system components)

Structural parametrics (size, speed, relationships)
Behavioral parametrics (dependencies)
Analysis parametrics (system rollup, queuing, etc)

Mostly needed for traditional SE
project management

Key point: One model integrates all four aspects
(and it can support execution/computation)

THE BASIC IDEA

12

A USE CASE: SC DESIGN

13

• Many locations where loads
originate or terminate

• Many possibilities for distribution
center locations

• Many possibilities for fleet
configuration at each DC

• Want to guarantee delivery lead
time

• Uncertain pickup/drop rates at
each customer

If you care about both cost and service level, how many DCs should you have,
where should they be, how should you configure each DC’s vehicle fleet, and
how should you dispatch vehicles?

Not just an optimization problem, because of control and uncertainty.

Not just a simulation problem, because of facility and fleet configuration
decisions.

NETWORK META MODEL

14

An example of a “meta-model” defining the semantics for creating an
instance model of a particular (abstract) network.

SC META MODEL ELEMENTS

15

Using the meta-model concepts (e.g., <<Flow Network>>, <<Flow Edge>>, etc.)
to develop a “domain specific language”, with semantics that are easily
understood by the domain experts and stakeholders

TRANSPORT CHANNEL BEHAVIOR

16

For this to work, we have to be precise—the system instance model
cannot be ambiguous, because that will prevent reliable transformation
to analysis models.

SC “OBJECT” REFERENCE MODEL

• Includes slots for source-sink flow network
• Includes slots for transportation network
• Includes slots for depots, fleets, and vehicle

dispatch control

• Create an “instance” of the supply chain
“object” which contains all the information you
have for a particular supply chain design.

17

HIERARCHICAL DESIGN ANALYSIS

18

Each analysis “conforms” to the supply chain reference model, thus works for
any “instance” of the supply chain object.

STRUCTURE: DEPOT SELECTION VIA MCFN

19

• Aggregate and approximate the flows
and costs

• Solve MCFN using a COTS solver
(CPLEX)

• Apply a “leave one out” strategy to
generating several feasible candidate
network structures.

• In this case, generate 5 candidates

Goal: Reduce the
computational requirements
of optimizing the distribution
network structure.

Strategy: Formulate and
solve a corresponding multi-
commodity flow network and
facility location problem.

BEHAVIOR: RESOURCE SELECTION

20

Goal: Capture and evaluate the behavioral
aspects of the system using discrete event
simulation.

Strategy: Generate a DES that simulates a
probabilistic flow of commodities through the
system.

• For each candidate
supply chain network
structure, generate a
portfolio of solutions to
the fleet sizing problem

• Trade-off cycle
time/service level and
resource investment cost

CONTROL: RESOURCE ASSIGNMENT

21

Goal: Select and design a detailed specification
of the control policies for assigning trucks to
pickup/dropoff tasks at customers.

Strategy: Generate a high-fidelity simulation that
is detailed enough to fine-tune resource and
control behavior.

Generate a Pareto set of solutions that trade-off
Service Level, Capital Costs, and Travel Distance

KINDS OF RESULTS

22

• These are Pareto optimal designs
• Decision makers make trade-offs
• Hundreds, perhaps thousands of

simulation runs, with varying depot
location decisions, varying fleet
configurations, varying control
policies—all generated
algorithmically

VISUALIZATION CHALLENGES

23

WHAT IF?

• You want to look inside a node and evaluate in
more detail how it will perform, i.e., you want
to model its production processes?

• Flow nodes can nest a flow network
• Need additional semantics

– Underlying network structures
– Semantics for product, process, resource, facility
– Semantics for control

24

DEFINE “PRODUCT”

25

DEFINE “PROCESS”

26

DEFINE “RESOURCE”

27

DEFINE “CONTROL”

28

29

FUNCTIONAL SPECIFICATION OF DELS CONTROLLER

If the ISA-95\L3 architecture is going to be implementable, it needs to be generic.

• DELS DSL (PPRF)

30

• Event Definition Language (EDL)
• Run-time Verification

• Production Rule Systems
• Finite State Machines• Call-behavior & system

actuators

METAMODEL OF OPERATIONAL CONTROL

• Contracts for Services (WSDL)
• Contract Net Protocol

• DELS DSL (PPRF)

• Strategy Pattern

• Event Definition Language (EDL)
• DELS DSL (PPRF)

• ECA Rules and Policies
• Policy Definition Language

• Process Specification Languages (Plans)

• Control
Questions

This research lives at the interfaces with many other disciplines, and it cannot be done
without integrating ideas from all of these communities: IE, OR, SysE, SwE, CS.

CONTROL QUESTIONS

31

• Which tasks get serviced? (Admission/Induction)
• When {sequence, time} does a task get serviced? (Sequencing/Scheduling)
• Which resource services a task? (Assignment/Scheduling)
• Where does a task go after service? (Routing)
• What is the state of a resource? (task/services can it service/provide)

Control questions provide a mapping from a formal functional definition of
control activities for DELS to formal (math programming) analysis models.

SEPARATION OF PLANT AND CONTROL

32

The prevailing paradigm in the literature neglects to separate the model of the plant from
the model of the control of that plant:

DELS domain
specific language

Canonical Control
Questions

Round-trip analysis
methodology

KEY LEARNING
• Need “concrete” modeling

for acceptance by domain
stakeholders

• Need “abstract” modeling
to support modeling
automation

• A consequence of the
need to be simultaneously
abstract and concrete is
that no perfect generic
DELS model exists. Any
simulation-generation
strategy must
accommodate a variety of
system models, each of
which may regularly
change and evolve

33

34

We solve this problem
by introducing a
bridging abstraction
model, one of our
biggest innovations.
It’s an abstract model
capturing the
underlying
commonalities of all
DELS, and is robust
and stable enough for
analysis-generator
programs to rely on.

ONE IMPLEMENTATION

35

To accomplish the transformation seamlessly, we need three things:
1. Relational Database (and instance data) that conforms to Reference Architecture (SysML)
2. MATLAB class definitions (classdefs) that conform to Reference Architecture (SysML)
3. SimEvents Model Library objects that conform to Reference Architecture (SysML)

Bridging
abstraction
and “factory”

ARE WE THERE YET?

36

We need “standards” for a DELS reference model, or DSL

We need to elaborate the bridging abstraction so that it’s complete and
rigorous

We need a better discrete event simulation platform, because no COTS tool
is up to the task of modeling & simulating control processes

BTW, we need more than simulation

We need a common s/w platform so that we can collaborate on achieving
this vision (as you find in the optimization world)

We need to focus on “round-trip analysis”

Scott’s right—we need test suites

37

	What Is a Reference Model and What Is It Good For?
	Context: 1
	Context: 2
	Context
	Observations
	Principles
	So how should we create these “reference models”?
	Two fundamental questions
	Slide Number 9
	Key Enabler: SysML
	For Example
	The basic idea
	A Use case: SC design
	Network meta model
	SC Meta model elements
	Transport channel behavior
	Sc “object” Reference model
	Hierarchical DESIGN analysis
	Structure: Depot Selection via MCFN
	Behavior: Resource Selection
	Control: Resource Assignment
	Kinds of results
	Visualization challenges
	What if?
	Define “product”
	Define “Process”
	Define “Resource”
	Define “control”
	Slide Number 29
	Metamodel of Operational Control
	Control Questions
	Separation of Plant and Control
	Key learning
	Slide Number 34
	One implementation
	Are we there yet?
	Slide Number 37

