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Abstract

ISE was born in Taylor's designed experiments with 

manufacturing processes. ISE grew into a mature discipline 

in the manufacturing heyday of the late 40's and 50's. 

Today, ISE is one of the fastest growing disciplines in 

developing economies of Asia and South America. But is 

the role of ISE in manufacturing beginning to diminish in 

the US and other developed economies? What are the 

modern manufacturing challenges that should be inspiring 

ISE researchers and practitioners, and how should we 

respond to those challenges?
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The Past
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Frederick W. Taylor



5

http://en.wikipedia.org/wiki/Frank_Bunker_

Gilbreth,_Sr.http://en.wikipedia.org/wiki/Lillian_Moller_G

ilbreth
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A brief summary of Taylor’s beginnings

❖ Pig iron

❖ Cannon boring

❖Maunsel White

❖ Carl Barth
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Pig Iron
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Canon Boring
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Maunsel White

Taylor-White process

() A process (invented about 1899 by Frederick W. Taylor 

and Maunsel B. White) for giving toughness to self-

hardening steels. The steel is heated almost to fusion, 

cooled to a temperature of from 700¡ to 850¡ C. in molten 

lead, further cooled in oil, reheated to between 370¡ and 

670¡ C., and cooled in air.
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Carl Barth
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Taylor saw opportunities

❖ Identify the best way of loading pig iron

▪ And teach it to the workforce

❖ Identify the best way of treating steel tools

▪ And treat all tools the same way, in a centralized tool shop

❖ Identify the best way of computing speeds and feeds

▪ And develop tools that automated the calculations for machinists
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Taylor saw opportunities

❖ Identify the fundamental work elements

▪ And reuse them everywhere

❖ Decompose any task into its constituent elements

▪ And optimize the worker’s “trajectory”

❖ Develop an engineering method for designing work

▪ And teach it to others
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Taylor’s work

❖ Evidence based

❖ Analytical

❖Multi-disciplinary
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Scientific (engineering) method

Phenomenon

Theory
Data

Testing

Learned & perfected 

abstractions

Decisions

Tools
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Taylor’s (process) abstraction

Process
Input

(to be transformed)

Output

(product)

Goals

Constraints

Parameters

Pig iron:  pigs to be loaded; minimizing the effort required; selecting 

men

Tool steel:  tools to be hardened; effect of heating/cooling; 

specifying the protocol

Speeds & Feeds:  job descriptions;  algorithm for computing S&F; 

tool for executing algorithm
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The “Taylor Process”

❖ Limited in:

▪ Space

▪ Time 

▪ Scope

▪ Interactions

▪ Number of “internal” entities involved

❖ Characterized by “efficiency”

❖ Subject to improvement
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Peter Drucker, 1974

On Taylor's 'scientific management' 

rests, above all, the tremendous 

surge of affluence in the last seventy-

five years which has lifted the working 

masses in the developed countries 

well above any level recorded before, 

even for the well-to-do. Taylor, though 

the Isaac Newton (or perhaps the 

Archimedes) of the science of work, 

laid only first foundations, however. 

Not much has been added to them 

since - even though he has been 

dead all of sixty years.
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1899 - 2009

How has ISE evolved? 

How has manufacturing evolved?
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ISE changes: 1899 – 2009  

❖More tools, better tools

▪ Statistics, Simulation, Optimization

▪ Ergonomics, org psych 

▪ Economics, decision theory

▪ Info & computing technology

▪ …

❖ Expanding scope of phenomena

▪ Unit Processes ➔ Homogeneous Systems

▪ Manufacturing ➔ Discrete Event Logistics

▪ …

❖ Learned abstractions

▪ Flow networks

▪ Activity networks
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ISE changes: 1899 – 2009  

❖More tools, better tools

▪ Statistics, Simulation, Optimization

▪ Ergonomics, org psych 

▪ Economics, decision theory

▪ Info & computing technology

▪ …

❖ Expanding scope of phenomena

▪ Unit Processes ➔ Homogeneous Systems

▪ Manufacturing ➔ Discrete Event Logistics

▪ …

❖ Learned abstractions

▪ Flow networks

▪ Activity networks

Our graduates today are very 

well equipped to solve 

“Taylor process” 

improvement problems.
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But do they go into manufacturing?



24

Here in the US, not so much…
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MANUFACTURING IS NOT DEAD!
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MANUFACTURING IS NOT DEAD!
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Manufacturing workplace

http://en.wikipedia.org/wiki/Factory

http://www.digital-daily.com/editorial/intel_ireland/index2.htm
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Manufacturing changes: 1899 – 2009 

❖ Automation

❖ Six sigma

❖ Lean ❖ Sensing/communication 

technology

❖ Factory information systems

❖ Standards

❖ Heterogeneous systems 

integration

❖ Aging workforce

❖ Declining academic standards

❖ Off shore competition

❖ Global products

❖ Global value chains
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today’s manufacturing 

problems.
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Our future
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The “status quo” fork

❖We are a high-priced resource, competing with a commodity 

resource—not a good competitive position

❖ The manufacturing experience is a leading indicator of the 

future of IE in other domains—e.g., all of services

❖ Down this fork lies a dim future—more and more IE 

departments absorbed into ME or closed altogether;  loss of 

ABET status;  IIE absorbed into one of the “supply chain” 

practice associations

http://pupillageandhowtogetit.files.wordpress.com/2009/04/homer_the_scream.jpg
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The “potpourri ” fork

❖ Requires individual department responsiveness to market

❖ Necessarily dilutes the “core IE content” of the curriculum

❖ Always one generation from oblivion

http://www.agingresearch.org/content/article/detail/892
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A third fork:  beyond simple Taylor process networks

❖ Complex, non-homogeneous networks

▪ Multiple disciplines

▪ Flows and activities

▪ Large scale, unpredictable, persistent, dynamic
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ISE in global value chains
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FACO

Global 

Sustainment

Global 

Sustainment
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Endogenous Risks:
• Technical failure at micro 

level

• Cycle time or capacity 
failure at meso level

• Response time failure at 
meso level

• Network failure at macro 
level (e.g., 
synchronization failure)

• Network Complexity & 
Relationships

Exogenous Risks:
• Politics, Policies

• Economics, Money

• Culture

• Demand

• Acts of Nature

GDS Inertia Risks
• “Readiness”

• Change Management

• Organization Design

• Governance/Control

Scenario-Based Risks
• Combinations

• Black Swan & Stress Test
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Global manufacturing value chains are 

socio-technical enterprise systems.

IE graduates may need new tools and new learned 

abstractions to contribute in this domain.
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A third fork:  beyond simple Taylor process networks

❖ Complex, non-homogeneous networks

▪ Multiple disciplines

▪ Flows and activities

▪ Large scale, unpredictable, persistent, dynamic

❖More than analysis—systems design and engineering
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New aircraft design

Aircraft

Market

Competitors

Exogenous

Factors

Customers

Aircraft

specification

Marketing

Design

Desired mission

profile

Price,

lifecycle COO

Achievable 

mission profile

Manufacturing

Cost Estimates

Production

Ramp

Manufacturing

Profit

Cost

Sales

Revenue

Aircraft Offering

Achievable

Production

Ramp
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Required Functional Agreement

Marketing Design

Manufacturing

Mission, cost

Sales schedule

Manufacturing costs

Production cost, 

Materials & features



41

Digital 
Enterprise

MBe MBm MBs

Electromechanical
•DFx
•Printed Circuit Board 
Warpage

•EDA-AP210 Converters

Long Term 
Data 
Retention

Engineering 
Analysis

Digital 
Manufacturing

• Product Modeling
• Process Modeling
• Information 

Modeling

Information Standards:  Infrastructure & Maintenance
AP203, AP209, AP210, AP233, AP239

Integration & Data Exchange Testing

Product Lifecycle Management – System Life Cycle Support

PDES, Inc. Digital 

Enterprise Phase

Systems Engineering

Model Based 
Enterprise

engineering manufacturing sustainability
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Fundamental challenges

❖ Formal language for systems description

❖Model based systems engineering

❖ Standards and open models/software

❖ False idol of mathematical rigor
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